962 research outputs found

    Assessment of exhaled carbon monoxide in exacerbations of chronic obstructive pulmonary disease

    Get PDF
    Introduction Exhaled carbon monoxide (eCO) has been widely implicated as a pulmonary biomarker in respiratory diseases. The aim of this study was to investigate whether the treatment of patients with severe acute exacerbation of chronic obstructive pulmonary disease (AECOPD) could be aided by monitoring the changes in eCO. Methods The levels of eCO along with routine clinical parameters were analyzed in 29 current smoker and 33 ex-smoker COPD patients, first at the time of hospital admission, and again at discharge following the standard treatment. Patients with AECOPD were also stratified according to sputum bacteria. Results At exacerbation, the levels of eCO were increased in current smokers compared to ex-smokers (6.0 [2.0–9.5] versus 1.0 [1.0–2.0] ppm, p  Conclusion Our results suggest that monitoring eCO during the treatment of AECOPD is of limited clinical value

    Johnson Space Center's regenerative life support systems test bed

    Get PDF
    The Regenerative Life Support System (RLSS) Test Bed at NASA's Johnson Space Center is an atmospherically closed, controlled environment facility for the evaluation of regenerative life support systems using higher plants in conjunction with physicochemical life support systems. When completed, the facility will be comprised of two large scale plant growth chambers, each with approximately 10 m(exp 2) growing area. One of the two chambers, the Variable Pressure Growth Chamber (VPGC), will be capable of operating at lower atmospheric pressures to evaluate a range of environments that may be used in Lunar or Martian habitats; the other chamber, the Ambient Pressure Growth Chamber (APGC) will operate at ambient atmospheric pressure. The root zone in each chamber will be configurable for hydroponic or solid state media systems. Research will focus on: (1) in situ resource utilization for CELSS systems, in which simulated lunar soils will be used in selected crop growth studies; (2) integration of biological and physicochemical air and water revitalization systems; (3) effect of atmospheric pressure on system performance; and (4) monitoring and control strategies

    Concepts of ground water recharge and well augmentation in northeastern Colorado

    Get PDF
    Presented during the USCID water management conference held on October 13-16, 2004 in Salt Lake City, Utah. The theme of the conference was "Water rights and related water supply issues."Includes bibliographical references.In northeastern Colorado, severe drought plus recent state court rulings have caused new and increased pressures on water rights. The current drought has been analyzed and is now thought to be a 300-year event based on proxy data obtained from tree rings. The drought factor, dramatic regional growth, transference of water from agriculture to municipal, and the increasing price of water have all put water rights under new and increased pressures. Tributary wells in the South Platte River Basin, in particular, have been severely impacted because oJ recent State Supreme Court rulings. In response, several ditch and canal companies have implemented their own ground water recharge programs and well augmentation plans to replace out of priority depletions to the river caused by well pumping. The approaches that several canal companies have used in developing a long term strategy are described. Interestingly, the dynamics of ground water recharge and well augmentation programs also dovetail nicely with canal modernization strategies and SCADA. In particular, the efforts of the New Cache la Poudre Irrigating Company and the Union Ditch Company are described to include application for new junior water rights, implementation of ground water recharge programs, and filings of augmentation plans for member wells in their respective service areas.Proceedings sponsored by the U.S. Department of the Interior, Central Utah Project Completion Act Office and the U.S. Committee on Irrigation and Drainage

    Evolution of cooperation driven by zealots

    Full text link
    Recent experimental results with humans involved in social dilemma games suggest that cooperation may be a contagious phenomenon and that the selection pressure operating on evolutionary dynamics (i.e., mimicry) is relatively weak. I propose an evolutionary dynamics model that links these experimental findings and evolution of cooperation. By assuming a small fraction of (imperfect) zealous cooperators, I show that a large fraction of cooperation emerges in evolutionary dynamics of social dilemma games. Even if defection is more lucrative than cooperation for most individuals, they often mimic cooperation of fellows unless the selection pressure is very strong. Then, zealous cooperators can transform the population to be even fully cooperative under standard evolutionary dynamics.Comment: 5 figure

    Light regulates alternative splicing outcomes via the TOR kinase pathway

    Get PDF
    For plants, light is the source of energy and the most relevant regulator of growth and adaptations to the environment by inducing changes in gene expression at various levels, including alternative splicing. Light-triggered chloroplast retrograde signals control alternative splicing in Arabidopsis thaliana. Here, we provide evidence that light regulates the expression of a core set of splicing-related factors in roots. Alternative splicing responses in roots are not directly caused by light but are instead most likely triggered by photosynthesized sugars. The target of rapamycin (TOR) kinase plays a key role in this shoot-to-root signaling pathway. Knocking down TOR expression or pharmacologically inhibiting TOR activity disrupts the alternative splicing responses to light and exogenous sugars in roots. Consistently, splicing decisions are modulated by mitochondrial activity in roots. In conclusion, by activating the TOR pathway, sugars act as mobile signals to coordinate alternative splicing responses to light throughout the whole plant.Fil: Riegler, Stefan. Universitat Fur Bodenkultur Wien; AustriaFil: Servi, Lucas. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Fisiología, Biología Molecular y Neurociencias. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Fisiología, Biología Molecular y Neurociencias; ArgentinaFil: Scarpin, Maria Regina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. University of California; Estados UnidosFil: Godoy Herz, Micaela Amalia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Fisiología, Biología Molecular y Neurociencias. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Fisiología, Biología Molecular y Neurociencias; ArgentinaFil: Kubaczka Zoppi, María Guillermina Jazmín. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Fisiología, Biología Molecular y Neurociencias. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Fisiología, Biología Molecular y Neurociencias; ArgentinaFil: Venhuizen, Peter. Universitat Fur Bodenkultur Wien; AustriaFil: Meyer, Christian. Universite Paris-Saclay; FranciaFil: Brunkard, Jacob O.. University of California; Estados UnidosFil: Kalyna, Maria. Universitat Fur Bodenkultur Wien; AustriaFil: Barta, Andrea. Medizinische Universitat Wien; AustriaFil: Petrillo, Ezequiel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Fisiología, Biología Molecular y Neurociencias. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Fisiología, Biología Molecular y Neurociencias; Argentin

    Solar science with the Atacama Large Millimeter/submillimeter Array - A new view of our Sun

    Get PDF
    The Atacama Large Millimeter/submillimeter Array (ALMA) is a new powerful tool for observing the Sun at high spatial, temporal, and spectral resolution. These capabilities can address a broad range of fundamental scientific questions in solar physics. The radiation observed by ALMA originates mostly from the chromosphere - a complex and dynamic region between the photosphere and corona, which plays a crucial role in the transport of energy and matter and, ultimately, the heating of the outer layers of the solar atmosphere. Based on first solar test observations, strategies for regular solar campaigns are currently being developed. State-of-the-art numerical simulations of the solar atmosphere and modeling of instrumental effects can help constrain and optimize future observing modes for ALMA. Here we present a short technical description of ALMA and an overview of past efforts and future possibilities for solar observations at submillimeter and millimeter wavelengths. In addition, selected numerical simulations and observations at other wavelengths demonstrate ALMA's scientific potential for studying the Sun for a large range of science cases.Comment: 73 pages, 21 figures ; Space Science Reviews (accepted December 10th, 2015); accepted versio
    corecore