29 research outputs found

    Heterozygous Variants in KMT2E Cause a Spectrum of Neurodevelopmental Disorders and Epilepsy.

    Get PDF
    We delineate a KMT2E-related neurodevelopmental disorder on the basis of 38 individuals in 36 families. This study includes 31 distinct heterozygous variants in KMT2E (28 ascertained from Matchmaker Exchange and three previously reported), and four individuals with chromosome 7q22.2-22.23 microdeletions encompassing KMT2E (one previously reported). Almost all variants occurred de novo, and most were truncating. Most affected individuals with protein-truncating variants presented with mild intellectual disability. One-quarter of individuals met criteria for autism. Additional common features include macrocephaly, hypotonia, functional gastrointestinal abnormalities, and a subtle facial gestalt. Epilepsy was present in about one-fifth of individuals with truncating variants and was responsive to treatment with anti-epileptic medications in almost all. More than 70% of the individuals were male, and expressivity was variable by sex; epilepsy was more common in females and autism more common in males. The four individuals with microdeletions encompassing KMT2E generally presented similarly to those with truncating variants, but the degree of developmental delay was greater. The group of four individuals with missense variants in KMT2E presented with the most severe developmental delays. Epilepsy was present in all individuals with missense variants, often manifesting as treatment-resistant infantile epileptic encephalopathy. Microcephaly was also common in this group. Haploinsufficiency versus gain-of-function or dominant-negative effects specific to these missense variants in KMT2E might explain this divergence in phenotype, but requires independent validation. Disruptive variants in KMT2E are an under-recognized cause of neurodevelopmental abnormalities

    Metal-organic interfaces at the nanoscale

    No full text
    10.1088/0957-4484/15/12/022Nanotechnology15121818-1824NNOT

    Glycogen-fuelled metabolism supports rapid mucosal-associated invariant T cell responses

    Get PDF
    Mucosal-associated invariant T (MAIT) cells are a subset of unconventional T cells which recognize a limited repertoire of ligands presented by the MHC class-I like molecule MR1. In addition to their key role in host protection against bacterial and viral pathogens, MAIT cells are emerging as potent anti-cancer effectors. With their abundance in human, unrestricted properties, and rapid effector functions MAIT cells are emerging as attractive candidates for immunotherapy. In the current study, we demonstrate that MAIT cells are potent cytotoxic cells, rapidly degranulating and inducing target cell death. Previous work from our group and others has highlighted glucose metabolism as a critical process for MAIT cell cytokine responses at 18 h. However, the metabolic processes supporting rapid MAIT cell cytotoxic responses are currently unknown. Here, we show that glucose metabolism is dispensable for both MAIT cell cytotoxicity and early (<3 h) cytokine production, as is oxidative phosphorylation. We show that MAIT cells have the machinery required to make (GYS-1) and metabolize (PYGB) glycogen and further demonstrate that that MAIT cell cytotoxicity and rapid cytokine responses are dependent on glycogen metabolism. In summary, we show that glycogen-fueled metabolism supports rapid MAIT cell effector functions (cytotoxicity and cytokine production) which may have implications for their use as an immunotherapeutic agent

    Obesity Reduces mTORC1 Activity in Mucosal-Associated Invariant T Cells, Driving Defective Metabolic and Functional Responses

    Get PDF
    Obesity underpins the development of numerous chronic diseases, such as type II diabetes mellitus. It is well established that obesity negatively alters immune cell frequencies and functions. Mucosal-associated invariant T (MAIT) cells are a population of innate T cells, which we have previously reported are dysregulated in obesity, with altered circulating and adipose tissue frequencies and a reduction in their IFN-g production, which is a critical effector function of MAIT cells in host defense. Hence, there is increased urgency to characterize the key molecular mechanisms that drive MAIT cell effector functions and to identify those which are impaired in the obesity setting. In this study, we found that MAIT cells significantly upregulate their rates of glycolysis upon activation in an mTORC1-dependent manner, and this is essential for MAIT cell IFN-g production. Furthermore, we show that mTORC1 activation is dependent on amino acid transport via SLC7A5. In obese patients, using RNA sequencing, Seahorse analysis, and a series of in vitro experiments, we demonstrate that MAIT cells isolated from obese adults display defective glycolytic metabolism, mTORC1 signaling, and SLC7A5 aa transport. Collectively, our data detail the intrinsic metabolic pathways controlling MAIT cell cytokine production and highlight mTORC1 as an important metabolic regulator that is impaired in obesity, leading to altered MAIT cell responses

    Breaking Barriers to Rapid Whole Genome Sequencing in Pediatrics: Michigan’s Project Baby Deer

    No full text
    The integration of precision medicine in the care of hospitalized children is ever evolving. However, access to new genomic diagnostics such as rapid whole genome sequencing (rWGS) is hindered by barriers in implementation. Michigan’s Project Baby Deer (PBD) is a multi-center collaborative effort that sought to break down barriers to access by offering rWGS to critically ill neonatal and pediatric inpatients in Michigan. The clinical champion team used a standardized approach with inclusion and exclusion criteria, shared learning, and quality improvement evaluation of the project’s impact on the clinical outcomes and economics of inpatient rWGS. Hospitals, including those without on-site geneticists or genetic counselors, noted positive clinical impacts, accelerating time to definitive treatment for project patients. Between 95–214 hospital days were avoided, net savings of $4155 per patient, and family experience of care was improved. The project spurred policy advancement when Michigan became the first state in the United States to have a Medicaid policy with carve-out payment to hospitals for rWGS testing. This state project demonstrates how front-line clinician champions can directly improve access to new technology for pediatric patients and serves as a roadmap for expanding clinical implementation of evidence-based precision medicine technologies

    Follow-up at 1 year and beyond of women with gestational diabetes treated with insulin and/or oral glucose-lowering agents: a core outcome set using a Delphi survey

    No full text
    Aims/hypothesis: Gestational diabetes mellitus (GDM) is linked with a higher lifetime risk for the development of impaired fasting glucose, impaired glucose tolerance, type 2 diabetes, the metabolic syndrome, cardiovascular disease, postpartum depression and tumours. Despite this, there is no consistency in the long-term follow-up of women with a previous diagnosis of GDM. Further, the outcomes selected and reported in the research involving this population are heterogeneous and lack standardisation. This amplifies the risk of reporting bias and diminishes the likelihood of significant comparisons between studies. The aim of this study is to develop a core outcome set (COS) for RCTs and other studies evaluating the long-term follow-up at 1 year and beyond of women with previous GDM treated with insulin and/oral glucose-lowering agents. Methods: The study consisted of three work packages: (1) a systematic review of the outcomes reported in previous RCTs of the follow-up at 1 year and beyond of women with GDM treated with insulin and/or oral glucose-lowering agents; (2) a three-round online Delphi survey with key stakeholders to prioritise these outcomes; and (3) a consensus meeting where the final COS was decided. Results: Of 3344 abstracts identified and evaluated, 62 papers were retrieved and 25/62 papers were included in this review. A total of 121 outcomes were identified and included in the Delphi survey. Delphi round 1 was emailed to 835 participants and 288 (34.5%) responded. In round 2, 190 of 288 (65.9%) participants responded and in round 3, 165 of 190 (86.8%) participants responded. In total, nine outcomes were selected and agreed for inclusion in the final COS: assessment of glycaemic status; diagnosis of type 2 diabetes since the index pregnancy; number of pregnancies since the index pregnancy; number of pregnancies with a diagnosis of GDM since the index pregnancy; diagnosis of prediabetes since the index pregnancy; BMI; post-pregnancy weight retention; resting blood pressure; and breastfeeding. Conclusions/interpretation: This study identified a COS that will help bring consistency and uniformity to outcome selection and reporting in clinical trials and other studies involving the follow-up at 1 year and beyond of women diagnosed with GDM treated with insulin and/or oral glucose-lowering agents during pregnancy

    Cytokines and Neurodevelopmental Outcomes in Extremely Low Birth Weight Infants

    No full text
    OBJECTIVE: To determine if selected pro-inflammatory and anti-inflammatory cytokines/mediators of inflammation reported to be related to development of cerebral palsy predict neurodevelopmental outcome in extremely low birth weight infants. STUDY DESIGN: Infants with birth weights ≤ 1000 g (n=1067) had blood samples collected at birth and on days 3±1, 7±1, 14±3, and 21±3 to examine the association between cytokines and neurodevelopmental outcomes. The analyses were focused on five cytokines (IL-1β, IL-8, TNF-α, RANTES, and IL-2) reported to be most predictive of CP in term and late preterm infants. RESULTS: IL-8 was higher on days 0–4 and subsequently in infants who developed CP compared with infants who did not develop CP in both unadjusted and adjusted analyses. Other cytokines (IL-12, IL-17, TNF-β, SIL-rα, MIP-1β) were found to be altered on days 0–4 in infants who developed CP. CONCLUSIONS: CP in former preterm infants may, in part, have a late perinatal and/or early neonatal inflammatory origin
    corecore