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Elevated protein concentrations in
newborn blood and the risks of autism
spectrum disorder, and of social
impairment, at age 10 years among infants
born before the 28th week of gestation
Steven J. Korzeniewski 1, Elizabeth N. Allred2, T. Michael O’Shea3, Alan Leviton2 and
Karl C. K. Kuban, for the ELGAN study investigators4

Abstract
Among the 1 of 10 children who are born preterm annually in the United States, 6% are born before the third
trimester. Among children who survive birth before the 28th week of gestation, the risks of autism spectrum disorder
(ASD) and non-autistic social impairment are severalfold higher than in the general population. We examined the
relationship between top quartile inflammation-related protein concentrations among children born extremely
preterm and ASD or, separately, a high score on the Social Responsiveness Scale (SRS total score ≥65) among those
who did not meet ASD criteria, using information only from the subset of children whose DAS-II verbal or non-verbal
IQ was ≥70, who were assessed for ASD, and who had proteins measured in blood collected on ≥2 days (N= 763).
ASD (N= 36) assessed at age 10 years is associated with recurrent top quartile concentrations of inflammation-related
proteins during the first post-natal month (e.g., SAA odds ratio (OR); 95% confidence interval (CI): 2.5; 1.2–5.3) and IL-6
(OR; 95% CI: 2.6; 1.03–6.4)). Top quartile concentrations of neurotrophic proteins appear to moderate the increased risk
of ASD associated with repeated top quartile concentrations of inflammation-related proteins. High (top quartile)
concentrations of SAA are associated with elevated risk of ASD (2.8; 1.2–6.7) when Ang-1 concentrations are below the
top quartile, but not when Ang-1 concentrations are high (1.3; 0.3–5.8). Similarly, high concentrations of TNF-α are
associated with heightened risk of SRS-defined social impairment (N= 130) (2.0; 1.1–3.8) when ANG-1 concentrations
are not high, but not when ANG-1 concentrations are elevated (0.5; 0.1–4.2).

Introduction
Children born very preterm are at increased risks of

autism spectrum disorder (ASD)1,2 as well as a range of
social limitations that do not meet ASD diagnostic

criteria3,4. In the ELGAN study of children born prior to
the 28th week of gestation, we used the Social Respon-
siveness Scale (SRS)5 to assess the constellation of pro-
blems referred to as the “preterm behavioral phenotype”6

among children who did not meet rigorous ASD criteria
at age 10 years and found that the prevalence was fourfold
greater than was expected based on general population
norms7.
Neonatal systemic inflammation (and related phenom-

ena8) appear to raise the risk of developing brain
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alterations9. By increasing the risk of structural brain
abnormalities, neonatal systemic inflammation might also
contribute to an increased risk of ASD10–12 and of social
limitations assessed by the SRS13–15 among children who
are not considered autistic. Growth factors with neuro-
trophic properties have the potential to minimize this
risk16–18.
We wanted to compare the systemic inflammation and

neurotrophic-protein newborn blood profiles among
children who met rigorously-defined ASD criteria, and
among children who did not meet these criteria, but who
nevertheless had very high SRS scores at age 10 years,
with the profiles of children who neither met ASD criteria
nor had very high SRS scores. By posing this question, we
in-effect sought evidence that supported or refuted the
hypothesis that the two entities are characterized by dif-
ferent blood protein profiles during the first post-natal
month.

Methods
The ELGAN study, a multi-center prospective, obser-

vational study of the risk of structural and functional
neurologic disorders in infants born before the 28th week
of gestation19, enrolled 1506 infants born before the 28th
week. Of these, 1198 children survived to 10 years; 889
(92%) of the 966 children who were actively recruited for
follow-up based on the availability of blood samples col-
lected during their first post-natal month provided
informed consent to participate at age 10 years. Enroll-
ment and consent procedures used for all patients in this
follow-up study were approved by the institutional review
boards of all participating institutions. The sample size
was derived to provide power to perceive a doubling or
halving of risk. Additional details about the study
design19, and about the assessment procedures used at age
10 years1,20, are provided in prior publications.

Newborn variables
The gestational age estimates were based on a hierarchy

of the quality of available information. Most desirable
were estimates based on the dates of embryo retrieval or
intrauterine insemination or fetal ultrasound before the
14th week (62%). When these were not available, reliance
was placed on a ≥14 weeks’ fetal ultrasound (29%), last
menstrual period (LMP) without fetal ultrasound (7%),
and gestational age recorded in the log of the neonatal
intensive care unit (NICU) (1%). The birthweight Z-score
is the number of standard deviations the infant’s birth-
weight is above or below the median weight of infants at
the same gestational age in a standard dataset21.

Procedures for the assessments at age 10 years
Families willing to participate were scheduled for one

visit during which all of the measures reported here were

administered in 3–4 h, including breaks. The assessments
were selected to provide the most comprehensive infor-
mation about neurocognitive and academic function in
one testing session. While the child was tested, the parent
or caregiver completed questionnaires regarding the
child’s medical and neurological status and behavior.

General cognitive ability
General cognitive ability (or intelligent quotient (IQ))

was assessed with the School-Age Differential Ability
Scales–II (DAS-II) Verbal and Non-verbal Reasoning
scales22. We classified children into two groups based on
verbal or non-verbal components ≥70 (yes vs. no).

ASD assessment
The evaluation of ASD characteristics was conducted

sequentially with three instruments and is described in
detail elsewhere20. Briefly, children who had a Social
Communication Questionnaire (SCQ)23 score ≥11 were
brought back on another day to be evaluated with the
Autism Diagnostic Interview-Revised (ADI-R)24. Those
who satisfied modified criteria20 were assessed with the
Autism Diagnostic Observation Schedule, Second Version
(ADOS-2)25, which served as the criterion measure of
ASD in this study. Eleven children were assessed by
ADOS-2 who were not assessed by the ADI-R; eight
children were tested based on a prior clinical diagnosis of
ASD and/or having symptoms of ASD during cognitive
testing according to the site psychologist, and the parents
of two children did not complete the ADI-R assessment.

Indicator of social dysfunction: Social Responsiveness
Scale ≥65
The SRS identifies social impairment and quantifies its

severity5. This 65-item instrument provides a total score
reflecting severity of social deficits, as well as five subscale
scores: social awareness, social cognition, social commu-
nication, social motivation, and restricted interests and
repetitive behavior. We dichotomized scores at 65 (i.e.,
the 96th percentile in the general population), as have
others26, which is higher than the published threshold of
60 (i.e., the 84th percentile) used to indicate moderate
deficiencies in reciprocal soci°al behavior that are “clini-
cally significant” in the general population5.

Blood spot collection and measurement
Drops of blood were collected on filter paper on the first

post-natal day (range: 1–3 days), the 7th post-natal day
(range: 5–8 days), the 14th post-natal day (range:
12–15 days), the 21st post-natal day (range: 19–23 days),
and the 28th post-natal day (range: 26–29). All blood was
from the remainder of specimens obtained for clinical
indications. Dried blood spots were stored at −70 °C in
sealed bags with a desiccant until processed. Details about
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the elution of proteins from the blood spots are provided
elsewhere27. The total protein concentration in each
eluted sample was determined by BCA assay (Thermo
Scientific, Rockford, IL) using a multi-label Victor 2
counter (Perkin Elmer, Boston, MA) and the measure-
ments of each analyte normalized to mg total protein.

Proteins measured
The Genital Tract Biology Laboratory at the Brigham

and Women’s Hospital in Boston Massachusetts eluted all
blood spots as previously described and measured all
proteins reported here. The laboratory used the Meso
Scale Discovery to measure: C-reactive protein, serum
amyloid A (SAA), myloeperoxidase, interleukin-1 β (IL-
1β), IL-6, IL-6 receptor (IL-6R), tumor necrosis factor-α
(TNF-α), TNF receptor-1 (TNFR-1), TNFR-2, IL-8
(CXCL8), regulated upon activation, normal T-cell
expressed and secreted (RANTES; CCL5), intercellular
adhesion molecule -1 (ICAM-1; CD54), vascular cell
adhesion molecule-1 (VCAM-1; CD106), vascular endo-
thelial growth factor (VEGF), VEGF receptor-1 (VEGFR-
1, also known as sFLT-1), VEGFR-2 (KDR), insulin-like
growth factor-1 (IGF) binding protein-1 (IGFBP-1),
thyroid-stimulating hormone, metalloproteinase (MMP)-
9, and erythropoietin (EPO).
A multiplex immunobead assay manufactured by R&D

Systems (Minneapolis, MN) and a MAGPIX Luminex
reader (R&D Systems) were used to measure
angiopoietin-1 (Ang-1), Ang-2, placenta growth factor
(PIGF), neurotrophin-4 (NT-4), brain-derived neuro-
trophic factor (BDNF), and basic fibroblastic growth fac-
tor (bFGF). ELISA (R&D Systems) was used to measure
IGF-1.
Because the concentrations of inflammation-related

proteins in the ELGAN study varied with gestational
age, and with the post-natal day of collection28, we divided
our sample into 15 groups defined by gestational age
category (23–24, 25–26, 27 weeks), and post-natal day of
blood collection (1, 7, 14, 21, and 28). Because we were
interested in the contribution of both high and low con-
centrations, and the concentrations of most proteins did
not follow a normal distribution, the distribution of each
protein’s concentration was divided into quartiles among
children in each of the 15 groups (three gestational age
groups, five collection days).

Data analyses
We tested three null hypotheses. First, elevated con-

centrations of each protein (defined as in the top quartile)
are not associated with increased ASD risk. Second,
among children who do not have ASD, elevated con-
centrations of each protein are not associated with
increased risk of SRS-defined social impairment. Third,
proteins with neurotrophic properties, and those with

anti-inflammatory properties, do not influence the asso-
ciation between selected inflammation-related proteins
and either outcome.
To test our hypotheses, we created three sets of logistic

regression models of increased ASD risk and the same
three sets of models for increased risk of SRS-defined
social impairment among children who did not meet ASD
criteria. We began by calculating odds ratios using
information from individual day protein measurements
(i.e., highest quartile blood concentration for gestational
age). Next, we calculated odds ratios based on 2 days of
single-protein elevations in the early or late epoch (post-
natal days 1, 7, 14, and 21, 28, respectively). Finally, we
generated our main findings by calculating odds ratios
based on sets of proteins that were elevated on multiple
days during the early or late epoch.
We examined two groups of protein sets. First, we

paired individual proteins with neurotrophic properties,
or individual proteins with anti-inflammatory properties,
to an inflammation-related protein whose recurrent ele-
vations are associated with increased risk of ASD or SRS-
defined social impairment during the early or late epoch.
Second, we paired these same neurotrophic and
inflammation-related proteins with TNF-α and (in sepa-
rate models) IL-8. We chose these two proteins based on
evidence that dysregulation of each molecule might pro-
vide key information about increased risk of ASD29–37,
and evidence of association with SRS scores among chil-
dren who meet ASD criteria32. In addition, in the full
sample recurrent/sustained top quartile concentrations of
TNF-α and IL-8 were strongly associated with increased
risk of brain ultrasound abnormalities during the first
post-natal weeks38, and with attention deficit hyper-
activity disorder at age 10 years39. Thus, each protein set
model involved two proteins (e.g., BDNF (a neurotrophic
protein) and SAA (a protein with inflammation-initiating
properties)). We compared children whose blood con-
centrations of just one of these two proteins was elevated
on multiple days (i.e., either the neurotrophic protein or
the inflammation-related protein concentration was in the
top quartile), and those whose concentrations of both of
the two proteins was recurrently elevated, to the
remaining reference group of children who had neither
protein concentration in the top quartile on 2 days during
the early or late epoch.
In the ELGAN cohort, the prevalence20 and risk profile1

of ASD among children with IQ <70 differ from those
whose IQ were ≥70. We wanted to examine the rela-
tionship between top quartile protein concentrations and
ASD separately in both IQ groups, but the relatively small
number of children with an IQ <70 who had proteins
measured, about half of who met ASD diagnostic criteria
(N= 24/52), precluded this. Consequently, we examined
the relationship between top quartile protein
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concentrations and ASD, and between top quartile pro-
tein concentrations and SRS-defined social impairment
(as indicated by an SRS total score ≥65), only among
children whose DAS-II verbal or non-verbal reasoning
scores were ≥70.
Children in the ELGAN study cohort who had top

quartile concentrations of inflammation-related proteins
were no more likely than their peers who had lower
concentrations to have a mother who had limited edu-
cational achievement, a low score on the Kaufman Brief
Intelligence Test, Second Edition™ (KBIT-2™), or was eli-
gible for government-provided medical care insurance
(Medicaid)40. Thus, confounding by social class is mini-
mized, nor were other potential confounders, such as sex,
associated with systemic inflammation. Alternatively, low
gestational age and fetal growth restriction were asso-
ciated with elevated protein concentrations41, and with
ASD1, as well as with a high SRS total score ≥65
(unpublished data). Consequently, we adjusted for gesta-
tional age category (23–24, 25–26, 27 weeks) and birth-
weight Z-score <−1. Odds ratios (ORs) with 95%
confidence intervals (CI) that do not include the null
estimate of association (OR “1.0”) are statistically sig-
nificant. The relevant data underlying this study are
subject to ethical/legal restrictions. Interested researchers
can visit policies and procedures for information about
data access and analysis from the ELGAN study website
(http://www.bmc.org/Documents/PAD-Elgan-Study.pdf).

Results
Of the 794 children whose verbal or non-verbal IQ was

≥70, 763 were evaluated for ASD and had proteins mea-
sured in blood on 2 separate days; 36 (5%) met ASD
criteria at age 10 years (Supplement Table 1). Of the 720
children whose verbal or non-verbal IQ was ≥70 who did
not have ASD, 130 (18%) had a SRS total score ≥65.
Odds ratios estimated by models of increased risk of

ASD and (separately) SRS-defined social impairment that
we created using information from individual proteins
repeatedly elevated during the early or late epoch are,
respectively, displayed side by side in Supplement Figures
S1 and S2. We generated our main findings using infor-
mation from protein sets that were repeatedly elevated
during the early or late epoch (Supplement Figures S3–
S5). To acknowledge that statistical power was limited,
and yet not discard information from non-significant odds
ratios, we used different symbols in the figures to identify
statistically non-significant odds ratios that were ≥2.0.
We prepared Table 1 to summarize in what ways high

concentrations of proteins with neurotrophic properties
(i.e., EPO, BDNF, IGF-1, VEGF, VEGF-R2, PIGF, Ang-1,
Ang-2) and proteins with anti-inflammatory properties
(e.g., IL-6R, MMP-9, RANTES) appear to modulate the
risk of ASD or (separately) SRS-defined social impairment

that was associated with high concentrations of selected
pro-inflammatory proteins (e.g., SAA, IL-6, TNF-α, or IL-
8) occurring on multiple days of the early or late epoch.

Risk of ASD associated with sets of proteins measured in
blood during the early and late epochs
Because increased risk of ASD was associated with a

high concentration of SAA on 2 days during the early
epoch (OR (95% CI): 2.5 (1.2, 5.3)), and with top quartile
IL-6 on both days of the late epoch (OR (95% CI): 2.6
(1.03–6.4)) (Supplement Figure S2), we wanted to see if a
high concentration of a neurotrophic protein, or of a
protein with anti-inflammatory properties on 2 days
during the early or late epoch modulated these associa-
tions (Summary Table 1 and Supplement Figure S 3). The
elevated risk of ASD associated with a recurrent top
quartile concentration of SAA in the early epoch, and
with a top quartile concentration of IL-6 on both days of
the late epoch, is prominently modulated by both neu-
rotrophic and anti-inflammatory proteins (i.e., the odds
ratios in Supplement Figure S3, column 3 differ from
those in columns 1 and 2).
When the concentration of a neurotrophic protein, or a

protein with anti-inflammatory properties, was not in the
top quartile during the early epoch, a recurrent top
quartile concentration of SAA was associated with two-
to-fourfold increased risk of ASD in 12 of the 14 models
(OR (95% CI) range: 2.3 (1.05–5.2) to 3.8 (1.7–8.8); Sup-
plement Figure S3, column 3). By contrast, when the
neurotrophic protein, or a protein with anti-inflammatory
properties, was in the top quartile, recurrent elevation of
SAA is associated with increased risk of ASD in only one
of the 14 models, when NT-4 was also elevated (OR (95%
CI): 4.6 (1.1–18); Supplement Figure S3, column 1). A
similar, but somewhat less impressive, pattern of asso-
ciation is seen during the late epoch in models with top
quartile concentrations of IL-6 and each of these proteins.
When the concentration of a neurotrophic protein, or a
protein with anti-inflammatory properties, was not in the
top quartile, a recurrent top quartile concentration of IL-6
was associated with two-to-threefold increased risk of
ASD in 7 of the 14 models (OR (95%CI) range: 2.5
(1.6–17) to 3.1 (1.2–8.1)).
By contrast, when the neurotrophic protein, or a protein

with anti-inflammatory properties, was not in the top
quartile, a recurrent top quartile concentration of IL-6
during the late epoch is associated with increased ASD
risk in only 3 of the 14 models, when combined with
elevated concentrations of BDNF (OR (95% CI): 7.8
(1.3–48)), bFGF (OR (95% CI): 12 (1.7–84)) or NT-4 (OR
(95%CI): 37 (2–694)). Indeed, the increased risk of ASD
associated with a top quartile NT-4 concentration was
seen even when the late-epoch concentration of IL-6 was
not in the top quartile (OR (95% CI): 3.6 (1.4–9)).
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Risk of ASD and (separately) of SRS-defined social
impairment associated with sets of proteins involving TNF-
α or IL-8 measured in blood during the early and late
epochs
Based on a priori evidence of association between ASD

and elevated blood concentrations of specific proteins,
and also because top quartile TNF-α and IL-8 con-
centrations were associated with increased risk of ASD
and/or a high SRS total score on post-natal days 14, 21,
and 28 (Supplement Figure S1) in our sample, we wanted
to see if an association between either outcome and
recurrent elevation of each protein during the early or late
epoch was modulated by an elevated concentration of a
neurotrophic protein or a protein with anti-inflammatory
properties (Summary Table 1, Supplement Figures S4 and
S5). Increased ASD risk did not occur with high con-
centrations of either TNF-α or IL-8 on 2 days in the early
epoch, not even when the concentrations of the neuro-
trophic proteins were below the 75th percentile (Supple-
ment Figure S4). Only the combination of recurrent top
quartile RANTES and elevated IL-8 concentration was

associated with increased risk of high SRS total score
during the early epoch (OR (95% CI): 2.8 (1.3–6)); none of
the other 13 models identified protein sets whose recur-
rent elevations were associated with social impairment
during the early epoch.
By contrast, during the late epoch, when the con-

centrations of NT-4 and Ang-2 were not recurrently
elevated, top quartile concentrations of TNF-α on both
days were associated with increased ASD risk (OR (95%
CI): 3.2 (1.1–9) and 2.8 (1.1–7.7), respectively). When the
neurotrophic protein or a protein with anti-inflammatory
properties was not in the top quartile, recurrent elevation
of TNF-α was non-significantly associated with twofold or
more increased risk of ASD in 9 of the 12 remaining
models. (Supplement Figure S5, column 3). A similar
pattern of association occurred during the late epoch in
models including recurrent elevations of IL-8. When the
neurotrophic protein or a protein with anti-inflammatory
properties was not in the top quartile, recurrent elevation
of IL-8 was non-significantly associated with twofold or
more increased risk of ASD in 11 of 14 models. Increased

Table 1 This is a summary of the main findings displayed in Supplement Figures S3–S5

indicates increased risk of the entity at the top of sets of columns when the concentrations of both the pro-inflammatory protein listed in each column heading and
the protein listed on the left are high, while indicates the increased risk associated with the protein in the column heading is reduced in the presence of a high
concentration of the protein on the left. The small in the late-epoch column for ASD indicates a non-significant ASD odds ratio of 2.0 or more associated with high
concentrations of IL-8, but only when the concentration of the protein on the left is not high.
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ASD risk also occurred with top quartile concentrations
of both proteins on both days of the late epoch for
combinations of TNF-α with BDNF (OR (95% CI): 5.6
(1.4–23)) and bFGF (OR (95% CI): 6.1 (1.1–35)), and also
for combinations of IL-8 with NT-4 (OR (95%CI): 18
(2.4–130)) and bFGF (OR (95%CI): 12 (1.6–81)). A
recurrent top quartile NT-4 concentration was associated
with increased ASD risk even when combined with a low
TNF-α concentration during the late epoch.
The most prominent pattern of association with statis-

tically significant elevations of SRS-defined social-
impairment risk occurred during the late epoch with a top
quartile pro-inflammation protein concentration in
combination with a low neurotrophic (or anti-inflamma-
tory) protein concentration on both days; this pattern
occurred with combinations of TNF-α and IL-6R,
RANTES, BDNF, PIGF, and Ang-1 (OR (95% CI) range:
1.9 (1.01–3.6) to 2.3 (1.2–4.3)), and with combinations of
IL-8 and EPO, NT-4, IGF-1, Ang-1, and Ang-2 (OR (95%
CI) range: 2 (1.05–4) to 2.1 (1.1–4.1)). Statistically sig-
nificant elevations in risk of a total SRS ≥65 also occurred
with a combination of top quartile IL-8 and top quartile
IL-6R, concentrations on both days of the late epoch (OR
(95% CI): 4.4 (1.2–16)). In addition, increased risk of SRS-
defined social impairment occurred when the con-
centration of TNF-α was below the top quartile and the
concentration of BDNF was not (OR (95% CI): 2.1
(1.05–4.2)).

Discussion
We have three main findings. First, after excluding

children whose verbal or non-verbal IQ was ≥70, those
who developed SRS-defined social limitations, and chil-
dren diagnosed with ASD at age 10 years, have newborn
blood protein profiles that differed from peers who
developed neither of these two conditions. Second, top
quartile concentrations of neurotrophic proteins, and
proteins with anti-inflammatory properties, do, indeed,
appear to moderate the increased risk of ASD associated
with repeated top quartile concentrations of an
inflammation-related protein during the first post-natal
month. Third, neurotrophic proteins seem to modulate
the increased risk of a high SRS total score associated with
a top quartile concentration of an inflammation-inducing
protein on post-natal days 21 and 28, but not before, in
contrast to the models of increased ASD risk.

Neurodevelopmental outcomes of children born very
preterm
We do not know why children born very preterm are at

increased risk of neurodevelopmental disorders including
ASD and its’ correlates; vulnerability of brain maturation
processes42, a paucity of neuroprotective factors39,43, post-
natal physiologic instability42,44, neonatal illnesses (e.g.,

bacteremia45), and systemic inflammation-related phe-
nomena appear to contribute to the increased risks8,46. In
the ELGAN study cohort, severe fetal growth restriction is
the most strongly associated antecedent of ASD without
intellectual disability (OR (95% CI): 9.9 (3.3–30))1. In
agreement with others, we have also found that extremely
low gestational age at delivery is associated with a several-
fold increased risk of ASD irrespective of intellectual
ability47. Because ASD and social impairment have been
associated with sonographic images of white matter irre-
gularities (ventriculomegaly and disrupted microstructure
integrity/connectivity)10,13,48–61, and because white matter
injury (WMI) among children born very preterm are
associated with systemic inflammation-related phenom-
ena8,46,62,63, our findings might reflect these relationships.

Inflammation-related proteins, neurotrophins, and
neurodevelopmental disorders
Under an allostasis framework, “…acute stress enhances

immune function whereas chronic stress suppresses it,
[which] can be beneficial for some types of immune
responses and deleterious for others”64. From this per-
spective, the mechanisms that alter brain structure or
function might reflect the consequences of enhancing
inflammation resolution65, or enhancing repair66, or most
likely a mix of both67–69. Neurotrophins and angio-
trophins are likely to participate in such processes.
Though the relationships among neurotrophins and

inflammation are complex, prior studies have provided
evidence of anti-inflammatory attributes70,71, which might
confer “neuroprotection” or otherwise influence “neuro-
vulnerability.” Indeed, “..the immune system and the
nervous system are anatomically connected, mechan-
istically communicate and reciprocally influence the
other’s function”72, there is evidence of co-regulation of
inflammation and social behavior73, and alterations in
serum level of specific growth factors have been impli-
cated in the etiology, symptoms, and progression of some
psychiatric disorders, including ASD, cognitive, mood and
social disabilities16–18,74.
In studies of our cohort, elevated concentrations of

inflammation-related proteins on only 1 day are less likely
to convey information about the risk of developmental
disabilities than are elevated concentrations on multiple
days8. We have also found that elevated concentrations of
an inflammation-related protein on multiple days are best
evaluated in the presence and absence of elevated con-
centrations of neurotrophic proteins39.
The increased risk of ASD in the presence of high

concentrations of both an inflammatory and a neuro-
trophic protein might be an indicator of the release of
both proteins into the circulation. A likely inference then
is that the high concentrations do not contribute to the
onset of brain damage or dysfunction, but rather are a
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tertiary consequence of processes already initiated. Evi-
dence from animal models supports this possibility63.
Another possibility is that a high concentration of one

protein contributes to processes which then result in the
release of the other protein or the release of signals to
increase the synthesis of the other protein. Although the
etiologic significance of these differences remains to be
identified, inflammation seems involved in the patho-
genesis of both ASD and SRS-defined social limitations.

Findings from other studies
Prior studies have also demonstrated underexpression

of VEGF32, TGF-β130, NT-337, NT-475,76, HGF77, EGF77–
79, and IP-1080 in blood obtained from children with a
current or later diagnosis of autism. Affected children are
also more likely than others to have high blood con-
centrations (or messenger RNA expression) of some
neurotrophic proteins (e.g., BDNF17,81,82 and NT83) and
such inflammation-related proteins as IL-1b32,36,84,85, IL-
1RA35, IL-485, IL-535, IL-636,84, IL-834, IL-12 (p40)36, IL-12
(p70)35, IL-1335, IL-1784, GRO-α35, TNF-α29,86,
RANTES80, MIP-1-α80, MCP-187, MIP-1α80, and MIP-
1β80.

Molecular risk profiles
ASD is currently diagnosed entirely according to

behavioral criteria, although efforts are underway to
identify concurrent biological markers for disease risk and
early diagnosis88. We, however, have studied biomarkers
of very early post-natal exposures and characteristics to
better understand why children born extremely preterm
are at increased risk of ASD and social-impairment lim-
itations. We do not encourage classifying children’s risks
based on concurrent concentrations of the proteins we
measured.

Limitations and strengths
Among the strengths of this study are the large sample

size, enrollment based on gestational age and not birth-
weight, modest attrition, protein measurements of high-
quality89 and high-content validity90 longitudinal mea-
surements of blood protein concentrations rather than
single “snap shots”91, and high-quality assessments of
ASD and social limitations 10 years later92. To avoid type
II errors whose likelihood is increased with inappropriate
adjustment for multiple comparisons93, we did not per-
form such adjustments. This might have increased the
risk of type I errors. Despite the large size of the ELGAN
study cohort, we had limited power, but nevertheless were
able to identify statistically significant associations in this
sample. Our findings are generalizable to children born
extremely preterm whose verbal or non-verbal IQ was
≥70; even though we excluded children whose verbal and

non-verbal IQ were <70, it is possible that some of the
remaining intellectual deficits influenced our findings.

Conclusion
High concentrations of neurotrophins in newborn

blood appear to modulate the increased risks of ASD
associated with systemic inflammation during the first
post-natal month; a similar pattern of association was
observed for SRS-defined social, but only on post-natal
days 21 and 28.
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