192 research outputs found

    DE-PASS Best Evidence Statement (BESt): modifiable determinants of physical activity and sedentary behaviour in children and adolescents aged 5–19 years–a protocol for systematic review and meta-analysis

    Get PDF
    Introduction Physical activity among children and adolescents remains insufficient, despite the substantial efforts made by researchers and policymakers. Identifying and furthering our understanding of potential modifiable determinants of physical activity behaviour (PAB) and sedentary behaviour (SB) is crucial for the development of interventions that promote a shift from SB to PAB. The current protocol details the process through which a series of systematic literature reviews and meta-analyses (MAs) will be conducted to produce a best-evidence statement (BESt) and inform policymakers. The overall aim is to identify modifiable determinants that are associated with changes in PAB and SB in children and adolescents (aged 5–19 years) and to quantify their effect on, or association with, PAB/SB. Methods and analysis A search will be performed in MEDLINE, SportDiscus, Web of Science, PsychINFO and Cochrane Central Register of Controlled Trials. Randomised controlled trials (RCTs) and controlled trials (CTs) that investigate the effect of interventions on PAB/SB and longitudinal studies that investigate the associations between modifiable determinants and PAB/SB at multiple time points will be sought. Risk of bias assessments will be performed using adapted versions of Cochrane’s RoB V.2.0 and ROBINS-I tools for RCTs and CTs, respectively, and an adapted version of the National Institute of Health’s tool for longitudinal studies. Data will be synthesised narratively and, where possible, MAs will be performed using frequentist and Bayesian statistics. Modifiable determinants will be discussed considering the settings in which they were investigated and the PAB/SB measurement methods used. Ethics and dissemination No ethical approval is needed as no primary data will be collected. The findings will be disseminated in peer-reviewed publications and academic conferences where possible. The BESt will also be shared with policy makers within the DE-PASS consortium in the first instance

    Feeling ‘like a minority…a pathology’: interpreting race from research with African and Caribbean women on violence and abuse

    Get PDF
    Qualitative researchers are often advised to use their emotional responses to data, and participants’ experiences are understood through those of researchers’, how this process unfolds is less clear. This paper is about role of feelings for the qualitative researcher at different stages of the process and offers strategies for working through, ‘using’ and ‘feeling together with’ participants, reflections on lived experiences. I interviewed nine African and Caribbean heritage British women about their experiences of violence and abuse where one described feeling ‘like a minority…a pathology’. This paper describes my responses to experiences of racialised and gendered intrusion in interviews, later reflection and analytic work. The paper brings recognition to a stigmatised and hidden process within qualitative interviews and data interpretation. This serves to amplify the impact of injustice and adverse experiences for participants, and researchers, and to a wider audience, and to validate its existence and emotional burden as a legitimate and crucial stage of qualitative data analysis

    ‘‘Beet-ing’’ the Mountain: A Review of the Physiological and Performance Effects of Dietary Nitrate Supplementation at Simulated and Terrestrial Altitude

    Get PDF
    Exposure to altitude results in multiple physiological consequences. These include, but are not limited to, a reduced maximal oxygen consumption, drop in arterial oxygen saturation, and increase in muscle metabolic perturbations at a fixed sub-maximal work rate. Exercise capacity during fixed work rate or incremental exercise and time-trial performance are also impaired at altitude relative to sea-level. Recently, dietary nitrate (NO3-) supplementation has attracted considerable interest as a nutritional aid during altitude exposure. In this review, we summarise and critically evaluate the physiological and performance effects of dietary NO3- supplementation during exposure to simulated and terrestrial altitude. Previous investigations at simulated altitude indicate that NO3- supplementation may reduce the oxygen cost of exercise, elevate arterial and tissue oxygen saturation, improve muscle metabolic function, and enhance exercise capacity/ performance. Conversely, current evidence suggests that NO3- supplementation does not augment the training response at simulated altitude. Few studies have evaluated the effects of NO3- at terrestrial altitude. Current evidence indicates potential improvements in endothelial function at terrestrial altitude following NO3- supplementation. No effects of NO3- supplementation have been observed on oxygen consumption or arterial oxygen saturation at terrestrial altitude, although further research is warranted. Limitations of the present body of literature are discussed, and directions for future research are provided

    Markers of physiological stress during exercise under conditions of normoxia, normobaric hypoxia, hypobaric hypoxia and genuine high altitude.

    Get PDF
    Purpose To investigate whether there is a differential response at rest and following exercise to conditions of genuine high altitude (GHA), normobaric hypoxia (NH), hypobaric hypoxia (HH) and normobaric normoxia (NN). Method Markers of sympathoadrenal and adrenocortical function (plasma normetanephrine [PNORMET], metanephrine [PMET], cortisol), myocardial injury (highly sensitive cardiac troponin T [hscTnT]) and function (N-terminal brain natriuretic peptide [NT-proBNP]) were evaluated at rest and with exercise under NN, at 3375 m in the Alps (GHA) and at equivalent simulated altitude under NH and HH. Participants cycled for 2 hours {15 minute warm-up, 105 minutes at 55% Wmax (maximal workload)} with venous blood samples taken prior (T0), immediately following (T120) and 2 hours post-exercise (T240). Results Exercise in the three hypoxic environments produced a similar pattern of response with the only difference between environments being in relation to PNORMET. Exercise in NN only induced a rise in PNORMET and PMET. Conclusion Biochemical markers that reflect sympathoadrenal, adrenocortical and myocardial responses to physiological stress demonstrate significant differences in the response to exercise under conditions of normoxia versus hypoxia while NH and HH appear to induce broadly similar responses to GHA and may therefore be reasonable surrogates
    • …
    corecore