738 research outputs found

    Analysis of surface waves generated on subwavelength-structured silver films

    Get PDF
    Using transmission electron microscopy (TEM) to analyse the physical-chemical surface properties of subwavlength structured silver films and finite-difference time-domain (FDTD) numerical simulations of the optical response of these structures to plane-wave excitation, we report on the origin and nature of the persistent surface waves generated by a single slit-groove motif and recently measured by far-field optical interferometry. The surface analysis shows that the silver films are free of detectable oxide or sulfide contaminants, and the numerical simulations show very good agreement with the results previously reported.Comment: 9 Figure

    Counting niches: Abundance- by- trait patterns reveal niche partitioning in a Neotropical forest

    Full text link
    Tropical forests challenge us to understand biodiversity, as numerous seemingly similar species persist on only a handful of shared resources. Recent ecological theory posits that biodiversity is sustained by a combination of species differences reducing interspecific competition and species similarities increasing time to competitive exclusion. Together, these mechanisms counterintuitively predict that competing species should cluster by traits, in contrast with traditional expectations of trait overdispersion. Here, we show for the first time that trees in a tropical forest exhibit a clustering pattern. In a 50- ha plot on Barro Colorado Island in Panama, species abundances exhibit clusters in two traits connected to light capture strategy, suggesting that competition for light structures community composition. Notably, we find four clusters by maximum height, quantitatively supporting the classical grouping of Neotropical woody plants into shrubs, understory, midstory, and canopy layers.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/155460/1/ecy3019.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/155460/2/ecy3019-sup-0001-AppendixS1.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/155460/3/ecy3019_am.pd

    Measuring Temperature Gradients over Nanometer Length Scales

    Full text link
    When a quantum dot is subjected to a thermal gradient, the temperature of electrons entering the dot can be determined from the dot's thermocurrent if the conductance spectrum and background temperature are known. We demonstrate this technique by measuring the temperature difference across a 15 nm quantum dot embedded in a nanowire. This technique can be used when the dot's energy states are separated by many kT and will enable future quantitative investigations of electron-phonon interaction, nonlinear thermoelectric effects, and the effciency of thermoelectric energy conversion in quantum dots.Comment: 6 pages, 5 figure

    Measurement of the scintillation time spectra and pulse-shape discrimination of low-energy beta and nuclear recoils in liquid argon with DEAP-1

    Get PDF
    The DEAP-1 low-background liquid argon detector was used to measure scintillation pulse shapes of electron and nuclear recoil events and to demonstrate the feasibility of pulse-shape discrimination (PSD) down to an electron-equivalent energy of 20 keV. In the surface dataset using a triple-coincidence tag we found the fraction of beta events that are misidentified as nuclear recoils to be <1.4×10−7<1.4\times 10^{-7} (90% C.L.) for energies between 43-86 keVee and for a nuclear recoil acceptance of at least 90%, with 4% systematic uncertainty on the absolute energy scale. The discrimination measurement on surface was limited by nuclear recoils induced by cosmic-ray generated neutrons. This was improved by moving the detector to the SNOLAB underground laboratory, where the reduced background rate allowed the same measurement with only a double-coincidence tag. The combined data set contains 1.23×1081.23\times10^8 events. One of those, in the underground data set, is in the nuclear-recoil region of interest. Taking into account the expected background of 0.48 events coming from random pileup, the resulting upper limit on the electronic recoil contamination is <2.7×10−8<2.7\times10^{-8} (90% C.L.) between 44-89 keVee and for a nuclear recoil acceptance of at least 90%, with 6% systematic uncertainty on the absolute energy scale. We developed a general mathematical framework to describe PSD parameter distributions and used it to build an analytical model of the distributions observed in DEAP-1. Using this model, we project a misidentification fraction of approx. 10−1010^{-10} for an electron-equivalent energy threshold of 15 keV for a detector with 8 PE/keVee light yield. This reduction enables a search for spin-independent scattering of WIMPs from 1000 kg of liquid argon with a WIMP-nucleon cross-section sensitivity of 10−4610^{-46} cm2^2, assuming negligible contribution from nuclear recoil backgrounds.Comment: Accepted for publication in Astroparticle Physic

    Towards improved decision support in the assessment and management of pain for people with dementia in hospital: a systematic meta-review and observational study

    Get PDF
    This is the final version. Available from NIHR Journals Library via the DOI in this record.Background Pain and dementia are common in older people, and impaired cognitive abilities make it difficult for them to communicate their pain. Pain, if poorly managed, impairs health and well-being. Accurate pain assessment in this vulnerable group is challenging for hospital staff, but essential for appropriate management. Robust methods for identifying, assessing and managing pain are needed. Aims and objectives Two studies were undertaken to inform the development of a decision support tool to aid hospital staff in the recognition, assessment and management of pain. The first was a meta-review of systematic reviews of observational pain assessment instruments with three objectives: (1) to identify the tools available to assess pain in adults with dementia; (2) to identify in which settings they were used and with what patient populations; and (3) to assess their reliability, validity and clinical utility. The second was a multisite observational study in hospitals with four objectives: (1) to identify information currently used by clinicians when detecting and managing pain in patients with dementia; (2) to explore existing processes for detecting and managing pain in these patients; (3) to identify the role (actual/potential) of carers in this process; and (4) to explore the organisational context in which health professionals operate. Findings also informed development of health economics data collection forms to evaluate the implementation of a new decision support intervention in hospitals. Methods For the meta-review of systematic reviews, 12 databases were searched. Reviews of observational pain assessment instruments that provided psychometric data were included. Papers were quality assessed and data combined using narrative synthesis. The observational study used an ethnographic approach in 11 wards in four UK hospitals. This included non-participant observation of 31 patients, audits of patient records, semistructured interviews with 52 staff and four carers, informal conversations with staff and carers and analysis of ward documents and policies. Thematic analysis of the data was undertaken by the project team. Results Data from eight systematic reviews including 28 tools were included in the meta-review. Most tools showed moderate to good reliability, but information about validity, feasibility and clinical utility was scarce. The observational study showed complex ward cultures and routines, with variations in time spent with patients, communication patterns and management practices. Carer involvement was rare. No pain decision support tools were observed in practice. Information about pain was elicited in different ways, at different times, by different health-care staff and recorded in separate documents. Individual staff made sense of patients’ pain by creating their own ‘overall picture’ from available information. Limitations Grey literature and non-English-language papers were excluded from the meta-review. Sample sizes in the observational study were smaller than planned owing to poor documentation of patients’ dementia diagnoses, gatekeeping by staff and difficulties in gaining consent/assent. Many patients had no or geographically distant carers, or a spouse who was too unwell and/or reluctant to participate. Conclusions No single observational pain scale was clearly superior to any other. The traditional linear concept of pain being assessed, treated and reassessed by single individuals did not ‘fit’ with clinical reality. A new approach enabling effective communication among patients, carers and staff, centralised recording of pain-related information, and an extended range of pain management interventions is proposed [Pain And Dementia Decision Support (PADDS)]. This was not tested with users, but a follow-on study aims to codesign PADDS with carers and clinicians, then introduce education on staff/patient/carer communications and use of PADDS within a structured implementation plan. PADDS will need to be tested in differing ward contexts.National Institute for Health Research Health Services and Delivery Research programm

    Herschel/HIFI observations of O-rich AGB stars : molecular inventory

    Get PDF
    Spectra, taken with the heterodyne instrument, HIFI, aboard the Herschel Space Observatory, of O-rich asymptotic giant branch (AGB) stars which form part of the guaranteed time key program HIFISTARS are presented. The aim of this program is to study the dynamical structure, mass-loss driving mechanism, and chemistry of the outflows from AGB stars as a function of chemical composition and initial mass. We used the HIFI instrument to observe nine AGB stars, mainly in the H2O and high rotational CO lines We investigate the correlation between line luminosity, line ratio and mass-loss rate, line width and excitation energy. A total of nine different molecules, along with some of their isotopologues have been identified, covering a wide range of excitation temperature. Maser emission is detected in both the ortho- and para-H2O molecules. The line luminosities of ground state lines of ortho- and para-H2O, the high-J CO and NH3 lines show a clear correlation with mass-loss rate. The line ratios of H2O and NH3 relative to CO J=6-5 correlate with the mass-loss rate while ratios of higher CO lines to the 6-5 is independent of it. In most cases, the expansion velocity derived from the observed line width of highly excited transitions formed relatively close to the stellar photosphere is lower than that of lower excitation transitions, formed farther out, pointing to an accelerated outflow. In some objects, the vibrationally excited H2O and SiO which probe the acceleration zone suggests the wind reaches its terminal velocity already in the innermost part of the envelope, i.e., the acceleration is rapid. Interestingly, for R Dor we find indications of a deceleration of the outflow in the region where the material has already escaped from the star.Comment: 6 Figures in the main paper + 12 further figures in the appendix (to be printed in electronic form) Accepted for publication by A&

    Epitaxial growth of visible to infra-red transparent conducting In2O3 nanodot dispersions and reversible charge storage as a Li-ion battery anode

    Get PDF
    peer-reviewedUnique bimodal distributions of single crystal epitaxially grown In2O3 nanodots on silicon are shown to have excellent IR transparency greater than 87% at IR wavelengths up to 4 mu m without sacrificing transparency in the visible region. These broadband antireflective nanodot dispersions are grown using a two-step metal deposition and oxidation by molecular beam epitaxy, and backscattered diffraction confirms a dominant (111) surface orientation. We detail the growth of a bimodal size distribution that facilitates good surface coverage (80%) while allowing a significant reduction in In2O3 refractive index. This unique dispersion offers excellent surface coverage and three-dimensional volumetric expansion compared to a thin film, and a step reduction in refractive index compared to bulk active materials or randomly porous composites, to more closely match the refractive index of an electrolyte, improving transparency. The (111) surface orientation of the nanodots, when fully ripened, allows minimum lattice mismatch strain between the In2O3 and the Si surface. This helps to circumvent potential interfacial weakening caused by volume contraction due to electrochemical reduction to lithium, or expansion during lithiation. Cycling under potentiodynamic conditions shows that the transparent anode of nanodots reversibly alloys lithium with good Coulombic efficiency, buffered by co-insertion into the silicon substrate. These properties could potentially lead to further development of similarly controlled dispersions of a range of other active materials to give transparent battery electrodes or materials capable of non-destructive in situ spectroscopic characterization during charging and discharging.ACCEPTEDpeer-reviewe

    Effect of Thermoelectric Cooling in Nanoscale Junctions

    Full text link
    We propose a thermoelectric cooling device based on an atomic-sized junction. Using first-principles approaches, we investigate the working conditions and the coefficient of performance (COP) of an atomic-scale electronic refrigerator where the effects of phonon's thermal current and local heating are included. It is observed that the functioning of the thermoelectric nano-refrigerator is restricted to a narrow range of driving voltages. Compared with the bulk thermoelectric system with the overwhelmingly irreversible Joule heating, the 4-Al atomic refrigerator has a higher efficiency than a bulk thermoelectric refrigerator with the same ZTZT due to suppressed local heating via the quasi-ballistic electron transport and small driving voltages. Quantum nature due to the size minimization offered by atomic-level control of properties facilitates electron cooling beyond the expectation of the conventional thermoelectric device theory.Comment: 8 figure
    • 

    corecore