142 research outputs found

    Yoongoorrookoo

    Get PDF
    Since the momentous release of the Montecristi Constitution of Ecuador in 2008, which recognised Nature, or Pacha Mama, as a subject of rights, the rights of Nature movement across the world has gained exponential momentum, with numerous jurisdictions worldwide now recognising some form of legal subjectivity vested upon Nature. In particular, since 2017, river personhood has dominated news headlines around the world as one of the most recognisable forms of Nature’s novel subjectivity. The emergence of legal personhood for nature, however, has been far from uncontroversial, and numerous critiques have been advanced against the use of such a legal category – traditionally applied to humans and their abstract creations (such as States and corporations) – to the natural world, resulting in numerous calls for an alternative category of legal personhood (one that some rights of Nature advocates have termed an ‘environmental person’). Against the backdrop of this emerging debate, this paper acknowledges the work undertaken by the Martuwarra Fitzroy River Council (Martuwarra Council), which was established in 2018 in the Kimberley region of Western Australia by six independent Indigenous nations to preserve, promote and protect their ancestral River from ongoing destructive ‘development’. The Council believes it is time to recognise the pre-existing and continuing legal authority of Indigenous law, or ‘First Law’, in relation to the River, in order to preserve its integrity through a process of legal decolonisation. First Law differs markedly from its colonial counterpart, as its principles are not articulated in terms of rules, policies and procedures, but rather through stories. This paper, therefore, begins with a dialogical translation of one First Law story relating to Yoongoorrookoo,1 the ancestral serpent being,2 to create a semantic bridge between two apparently distant legal worldviews. A dialogical comparative analysis is then followed to posit and explore the concept of an ‘ancestral person’ as a novel comparative tool that may be able not only to capture the idea of Nature as a legal subject, but also complex Indigenous worldviews that see Nature – in this case instantiated in the Martuwarra – as an ancestral being enmeshed in a relationship of interdependence and guardianship between the human and the nonhuman world. To instantiate and embody such relationships, the paper directly, and somewhat provocatively, acknowledges the River itself, the Martuwarra RiverOfLife, as the primary participant in such dialogue, an embodied non-human co-author who began a conversation then left to human writers to continue

    Mocetinostat for patients with previously treated, locally advanced/metastatic urothelial carcinoma and inactivating alterations of acetyltransferase genes

    Full text link
    BackgroundThe authors evaluated mocetinostat (a class I/IV histone deacetylase inhibitor) in patients with urothelial carcinoma harboring inactivating mutations or deletions in CREB binding protein [CREBBP] and/or E1A binding protein p300 [EP300] histone acetyltransferase genes in a singleâ arm, openâ label phase 2 study.MethodsEligible patients with platinumâ treated, advanced/metastatic disease received oral mocetinostat (at a dose of 70 mg 3 times per week [TIW] escalating to 90 mg TIW) in 28â day cycles in a 3â stage study (ClinicalTrials.gov identifier NCT02236195). The primary endpoint was the objective response rate.ResultsGenomic testing was feasible in 155 of 175 patients (89%). Qualifying tumor mutations were CREBBP (15%), EP300 (8%), and both CREBBP and EP300 (1%). A total of 17 patients were enrolled into stage 1 (the intentâ toâ treat population); no patients were enrolled in subsequent stages. One partial response was observed (11% [1 of 9 patients; the population that was evaluable for efficacy comprised 9 of the 15 planned patients]); activity was deemed insufficient to progress to stage 2 (null hypothesis: objective response rate of â ¤15%). All patients experienced â ¥1 adverse event, most commonly nausea (13 of 17 patients; 77%) and fatigue (12 of 17 patients; 71%). The median duration of treatment was 46 days; treatment interruptions (14 of 17 patients; 82%) and dose reductions (5 of 17 patients; 29%) were common. Mocetinostat exposure was lower than anticipated (doseâ normalized maximum serum concentration [Cmax] after TIW dosing of 0.2 ng/mL/mg).ConclusionsTo the authorsâ knowledge, the current study represents the first clinical trial using genomicâ based selection to identify patients with urothelial cancer who are likely to benefit from selective histone deacetylase inhibition. Mocetinostat was associated with significant toxicities that impacted drug exposure and may have contributed to modest clinical activity in these pretreated patients. The efficacy observed was considered insufficient to warrant further investigation of mocetinostat as a single agent in this setting.After the genomicâ based selection of patients with urothelial cancer with inactivating mutations/deletions in the histone acetyltransferase genes CREBBP and/or EP300, singleâ agent mocetinostat appears to be associated with significant toxicities that limit drug exposure. This may have contributed to the limited activity noted in the current phase 2 study (response rate of 11%) among heavily pretreated patients with platinumâ refractory disease.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/147860/1/cncr31817_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/147860/2/cncr31817.pd

    Hundreds of variants clustered in genomic loci and biological pathways affect human height

    Get PDF
    Most common human traits and diseases have a polygenic pattern of inheritance: DNA sequence variants at many genetic loci influence the phenotype. Genome-wide association (GWA) studies have identified more than 600 variants associated with human traits, but these typically explain small fractions of phenotypic variation, raising questions about the use of further studies. Here, using 183,727 individuals, we show that hundreds of genetic variants, in at least 180 loci, influence adult height, a highly heritable and classic polygenic trait. The large number of loci reveals patterns with important implications for genetic studies of common human diseases and traits. First, the 180 loci are not random, but instead are enriched for genes that are connected in biological pathways (P = 0.016) and that underlie skeletal growth defects (P < 0.001). Second, the likely causal gene is often located near the most strongly associated variant: in 13 of 21 loci containing a known skeletal growth gene, that gene was closest to the associated variant. Third, at least 19 loci have multiple independently associated variants, suggesting that allelic heterogeneity is a frequent feature of polygenic traits, that comprehensive explorations of already-discovered loci should discover additional variants and that an appreciable fraction of associated loci may have been identified. Fourth, associated variants are enriched for likely functional effects on genes, being over-represented among variants that alter amino-acid structure of proteins and expression levels of nearby genes. Our data explain approximately 10% of the phenotypic variation in height, and we estimate that unidentified common variants of similar effect sizes would increase this figure to approximately 16% of phenotypic variation (approximately 20% of heritable variation). Although additional approaches are needed to dissect the genetic architecture of polygenic human traits fully, our findings indicate that GWA studies can identify large numbers of loci that implicate biologically relevant genes and pathways.

    Minimal residual disease in Myeloma: Application for clinical care and new drug registration

    Get PDF
    The development of novel agents has transformed the treatment paradigm for multiple myeloma, with minimal residual disease (MRD) negativity now achievable across the entire disease spectrum. Bone marrow–based technologies to assess MRD, including approaches using next-generation flow and next-generation sequencing, have provided real-time clinical tools for the sensitive detection and monitoring of MRD in patients with multiple myeloma. Complementary liquid biopsy–based assays are now quickly progressing with some, such as mass spectrometry methods, being very close to clinical use, while others utilizing nucleic acid–based technologies are still developing and will prove important to further our understanding of the biology of MRD. On the regulatory front, multiple retrospective individual patient and clinical trial level meta-analyses have already shown and will continue to assess the potential of MRD as a surrogate for patient outcome. Given all this progress, it is not surprising that a number of clinicians are now considering using MRD to inform real-world clinical care of patients across the spectrum from smoldering myeloma to relapsed refractory multiple myeloma, with each disease setting presenting key challenges and questions that will need to be addressed through clinical trials. The pace of advances in targeted and immune therapies in multiple myeloma is unprecedented, and novel MRD-driven biomarker strategies are essential to accelerate innovative clinical trials leading to regulatory approval of novel treatments and continued improvement in patient outcomes

    Phenotypic spectrum and transcriptomic profile associated with germline variants in TRAF7

    Get PDF
    PURPOSE: Somatic variants in tumor necrosis factor receptor-associated factor 7 (TRAF7) cause meningioma, while germline variants have recently been identified in seven patients with developmental delay and cardiac, facial, and digital anomalies. We aimed to define the clinical and mutational spectrum associated with TRAF7 germline variants in a large series of patients, and to determine the molecular effects of the variants through transcriptomic analysis of patient fibroblasts. METHODS: We performed exome, targeted capture, and Sanger sequencing of patients with undiagnosed developmental disorders, in multiple independent diagnostic or research centers. Phenotypic and mutational comparisons were facilitated through data exchange platforms. Whole-transcriptome sequencing was performed on RNA from patient- and control-derived fibroblasts. RESULTS: We identified heterozygous missense variants in TRAF7 as the cause of a developmental delay-malformation syndrome in 45 patients. Major features include a recognizable facial gestalt (characterized in particular by blepharophimosis), short neck, pectus carinatum, digital deviations, and patent ductus arteriosus. Almost all variants occur in the WD40 repeats and most are recurrent. Several differentially expressed genes were identified in patient fibroblasts. CONCLUSION: We provide the first large-scale analysis of the clinical and mutational spectrum associated with the TRAF7 developmental syndrome, and we shed light on its molecular etiology through transcriptome studies

    Combined point of care nucleic acid and antibody testing for SARS-CoV-2 following emergence of D614G Spike Variant

    Get PDF
    Rapid COVID-19 diagnosis in hospital is essential, though complicated by 30-50% of nose/throat swabs being negative by SARS-CoV-2 nucleic acid amplification testing (NAAT). Furthermore, the D614G spike mutant now dominates the pandemic and it is unclear how serological tests designed to detect anti-Spike antibodies perform against this variant. We assess the diagnostic accuracy of combined rapid antibody point of care (POC) and nucleic acid assays for suspected COVID-19 disease due to either wild type or the D614G spike mutant SARS-CoV-2. The overall detection rate for COVID-19 is 79.2% (95CI 57.8-92.9%) by rapid NAAT alone. Combined point of care antibody test and rapid NAAT is not impacted by D614G and results in very high sensitivity for COVID-19 diagnosis with very high specificity

    SARS-CoV-2 susceptibility and COVID-19 disease severity are associated with genetic variants affecting gene expression in a variety of tissues

    Get PDF
    Variability in SARS-CoV-2 susceptibility and COVID-19 disease severity between individuals is partly due to genetic factors. Here, we identify 4 genomic loci with suggestive associations for SARS-CoV-2 susceptibility and 19 for COVID-19 disease severity. Four of these 23 loci likely have an ethnicity-specific component. Genome-wide association study (GWAS) signals in 11 loci colocalize with expression quantitative trait loci (eQTLs) associated with the expression of 20 genes in 62 tissues/cell types (range: 1:43 tissues/gene), including lung, brain, heart, muscle, and skin as well as the digestive system and immune system. We perform genetic fine mapping to compute 99% credible SNP sets, which identify 10 GWAS loci that have eight or fewer SNPs in the credible set, including three loci with one single likely causal SNP. Our study suggests that the diverse symptoms and disease severity of COVID-19 observed between individuals is associated with variants across the genome, affecting gene expression levels in a wide variety of tissue types

    Dissecting the Shared Genetic Architecture of Suicide Attempt, Psychiatric Disorders, and Known Risk Factors

    Get PDF
    Background Suicide is a leading cause of death worldwide, and nonfatal suicide attempts, which occur far more frequently, are a major source of disability and social and economic burden. Both have substantial genetic etiology, which is partially shared and partially distinct from that of related psychiatric disorders. Methods We conducted a genome-wide association study (GWAS) of 29,782 suicide attempt (SA) cases and 519,961 controls in the International Suicide Genetics Consortium (ISGC). The GWAS of SA was conditioned on psychiatric disorders using GWAS summary statistics via multitrait-based conditional and joint analysis, to remove genetic effects on SA mediated by psychiatric disorders. We investigated the shared and divergent genetic architectures of SA, psychiatric disorders, and other known risk factors. Results Two loci reached genome-wide significance for SA: the major histocompatibility complex and an intergenic locus on chromosome 7, the latter of which remained associated with SA after conditioning on psychiatric disorders and replicated in an independent cohort from the Million Veteran Program. This locus has been implicated in risk-taking behavior, smoking, and insomnia. SA showed strong genetic correlation with psychiatric disorders, particularly major depression, and also with smoking, pain, risk-taking behavior, sleep disturbances, lower educational attainment, reproductive traits, lower socioeconomic status, and poorer general health. After conditioning on psychiatric disorders, the genetic correlations between SA and psychiatric disorders decreased, whereas those with nonpsychiatric traits remained largely unchanged. Conclusions Our results identify a risk locus that contributes more strongly to SA than other phenotypes and suggest a shared underlying biology between SA and known risk factors that is not mediated by psychiatric disorders.Peer reviewe

    Characterisation of CorGlaes (R) Pure 107 fibres for biomedical applications

    Get PDF
    A degradable ultraphosphate (55 mol % P2O5) quinternary phosphate glass composition has been characterised in terms of its chemical, mechanical and degradation properties both as a bulk material and after drawing into fibres. This glass formulation displayed a large processing window simplifying fibre drawing. The fibres displayed stiffness and strength of 65.5 ± 20.8 GPa and 426±143 MPa. While amorphous discs of the glass displayed a linear dissolution rate of 0.004 mg cm−2 h−1 at 37 °C, in a static solution with a reduction in media pH. Once drawn into fibres, the dissolution process dropped the pH to &lt;2 in distilled water, phosphate buffer saline and corrected-simulated body fluid, displaying an autocatalytic effect with &gt;90 % mass loss in 4 days, about seven times faster than anticipated for this solution rate. Only cell culture media was able to buffer the pH taking over a week for full fibre dissolution, however, still four times faster dissolution rate than as a bulk material. However, at early times the development of a HCA layer was seen indicating potential bioactivity. Thus, although initial analysis indicated potential orthopaedic implant applications, autocatalysis leads to accelerating degradation in vitro
    corecore