7 research outputs found

    Age at first birth in women is genetically associated with increased risk of schizophrenia

    Get PDF
    Prof. Paunio on PGC:n jäsenPrevious studies have shown an increased risk for mental health problems in children born to both younger and older parents compared to children of average-aged parents. We previously used a novel design to reveal a latent mechanism of genetic association between schizophrenia and age at first birth in women (AFB). Here, we use independent data from the UK Biobank (N = 38,892) to replicate the finding of an association between predicted genetic risk of schizophrenia and AFB in women, and to estimate the genetic correlation between schizophrenia and AFB in women stratified into younger and older groups. We find evidence for an association between predicted genetic risk of schizophrenia and AFB in women (P-value = 1.12E-05), and we show genetic heterogeneity between younger and older AFB groups (P-value = 3.45E-03). The genetic correlation between schizophrenia and AFB in the younger AFB group is -0.16 (SE = 0.04) while that between schizophrenia and AFB in the older AFB group is 0.14 (SE = 0.08). Our results suggest that early, and perhaps also late, age at first birth in women is associated with increased genetic risk for schizophrenia in the UK Biobank sample. These findings contribute new insights into factors contributing to the complex bio-social risk architecture underpinning the association between parental age and offspring mental health.Peer reviewe

    Genetics of schizophrenia: A consensus paper of the WFSBP Task Force on Genetics

    Get PDF
    Objectives: Schizophrenia is a severe psychiatric disease affecting about 1% of the general population. The relative contribution of genetic factors has been estimated to be up to 80%. The mode of inheritance is complex, non-Mendelian, and in most cases involving the combined action of large numbers of genes. Methods: This review summarises recent efforts to identify genetic variants associated with schizophrenia detected, e.g. through genome-wide association studies, studies on copy-number variants or next-generation sequencing. Results: A large, new body of evidence on genetics of schizophrenia has accumulated over recent years. Many new robustly associated genetic loci have been detected. Furthermore, there is consensus that at least a dozen microdeletions and microduplications contribute to the disease. Genetic overlap between schizophrenia, other psychiatric disorders, and neurodevelopmental syndromes raised new questions regarding the current classification of psychiatric and neurodevelopmental diseases. Conclusions: Future studies will address especially the functional characterisation of genetic variants. This will hopefully open the doors to our understanding of the pathophysiology of schizophrenia and other related diseases. Complementary, integrated systems biology approaches to genomics, transcriptomics, proteomics and metabolomics may also play crucial roles in enabling a precision medicine approach to the treatment of individual patients.SCOPUS: re.jinfo:eu-repo/semantics/publishe

    Copy number variants and therapeutic response to antidepressant medication in major depressive disorder

    No full text
    It would be beneficial to find genetic predictors of antidepressant response to help personalise treatment of major depressive disorder (MDD). Rare copy number variants (CNVs) have been implicated in several psychiatric disorders, including MDD, but their role in antidepressant response has yet to be investigated. CNV data were available for 1565 individuals with MDD from the NEWMEDS (Novel Methods leading to New Medications in Depression and Schizophrenia) consortium with prospective data on treatment outcome with either a serotonergic or noradrenergic antidepressant. No association was seen between the presence of CNV (rare or common), the overall number of CNVs or genomic CNV 'burden' and antidepressant response. Specific CNVs were nominally associated with antidepressant response, including 15q13.3 duplications and exonic NRXN1 deletions. These were associated with poor response to antidepressants. Overall burden of CNVs is unlikely to contribute to personalising antidepressant treatment. Specific CNVs associated with antidepressant treatment require replication and further study to confirm their role in the therapeutic action of antidepressant. © 2014 Macmillan Publishers Limited All rights reserved.SCOPUS: ar.jinfo:eu-repo/semantics/publishe

    Genetic overlap between Alzheimer's disease and Parkinson's disease at the MAPT locus

    No full text
    We investigated the genetic overlap between Alzheimer's disease (AD) and Parkinson's disease (PD). Using summary statistics (P-values) from large recent genome-wide association studies (GWAS) (total n=89 904 individuals), we sought to identify single nucleotide polymorphisms (SNPs) associating with both AD and PD. We found and replicated association of both AD and PD with the A allele of rs393152 within the extended MAPT region on chromosome 17 (meta analysis P-value across five independent AD cohorts=1.65 × 10 -7). In independent datasets, we found a dose-dependent effect of the A allele of rs393152 on intra-cerebral MAPT transcript levels and volume loss within the entorhinal cortex and hippocampus. Our findings identify the tau-associated MAPT locus as a site of genetic overlap between AD and PD, and extending prior work, we show that the MAPT region increases risk of Alzheimer's neurodegeneration

    Polygenic overlap between C-reactive protein, plasma lipids, and Alzheimer disease

    No full text
    Background-Epidemiological findings suggest a relationship between Alzheimer disease (AD), inflammation, and dyslipidemia, although the nature of this relationship is not well understood. We investigated whether this phenotypic association arises from a shared genetic basis. Methods and Results-Using summary statistics (P values and odds ratios) from genome-wide association studies of >200 000 individuals, we investigated overlap in single-nucleotide polymorphisms associated with clinically diagnosed AD and C-reactive protein (CRP), triglycerides, and high-and low-density lipoprotein levels. We found up to 50-fold enrichment of AD single-nucleotide polymorphisms for different levels of association with C-reactive protein, low-density lipoprotein, high-density lipoprotein, and triglyceride single-nucleotide polymorphisms using a false discovery rate threshold -8) and chromosome 10 (rs7920721; closest gene, ECHDC3; odds ratio=1.07; 95% confidence interval=1.04-1.11; P=3.38×10-8). We also found that gene expression of HS3ST1 and ECHDC3 was altered in AD brains compared with control brains. Conclusions-We demonstrate genetic overlap between AD, C-reactive protein, and plasma lipids. By conditioning on the genetic association with the cardiovascular phenotypes, we identify novel AD susceptibility loci, including 2 genome-wide significant variants conferring increased risk for AD

    A novel Alzheimer disease locus located near the gene encoding tau protein

    No full text
    APOE ε4, the most significant genetic risk factor for Alzheimer disease (AD), may mask effects of other loci. We re-analyzed genome-wide association study (GWAS) data from the International Genomics of Alzheimer's Project (IGAP) Consortium in APOE ε4+ (10 352 cases and 9207 controls) and APOE ε4- (7184 cases and 26 968 controls) subgroups as well as in the total sample testing for interaction between a single-nucleotide polymorphism (SNP) and APOE ε4 status. Suggestive associations (P<1 × 10-4) in stage 1 were evaluated in an independent sample (stage 2) containing 4203 subjects (APOE ε4+: 1250 cases and 536 controls; APOE ε4-: 718 cases and 1699 controls). Among APOE ε4- subjects, novel genome-wide significant (GWS) association was observed with 17 SNPs (all between KANSL1 and LRRC37A on chromosome 17 near MAPT) in a meta-analysis of the stage 1 and stage 2 data sets (best SNP, rs2732703, P=5·8 × 10-9). Conditional analysis revealed that rs2732703 accounted for association signals in the entire 100-kilobase region that includes MAPT. Except for previously identified AD loci showing stronger association in APOE ε4+ subjects (CR1 and CLU) or APOE ε4- subjects (MS4A6A/MS4A4A/MS4A6E), no other SNPs were significantly associated with AD in a specific APOE genotype subgroup. In addition, the finding in the stage 1 sample that AD risk is significantly influenced by the interaction of APOE with rs1595014 in TMEM106B (P=1·6 × 10-7) is noteworthy, because TMEM106B variants have previously been associated with risk of frontotemporal dementia. Expression quantitative trait locus analysis revealed that rs113986870, one of the GWS SNPs near rs2732703, is significantly associated with four KANSL1 probes that target transcription of the first translated exon and an untranslated exon in hippocampus (P≤1.3 × 10-8), frontal cortex (P≤1.3 × 10-9) and temporal cortex (P≤1.2 × 10-11). Rs113986870 is also strongly associated with a MAPT probe that targets transcription of alternatively spliced exon 3 in frontal cortex (P=9.2 × 10-6) and temporal cortex (P=2.6 × 10-6). Our APOE-stratified GWAS is the first to show GWS association for AD with SNPs in the chromosome 17q21.31 region. Replication of this finding in independent samples is needed to verify that SNPs in this region have significantly stronger effects on AD risk in persons lacking APOE ε4 compared with persons carrying this allele, and if this is found to hold, further examination of this region and studies aimed at deciphering the mechanism(s) are warranted

    Genome-wide and fine-resolution association analysis of malaria in West Africa

    Get PDF
    We report a genome-wide association (GWA) study of severe malaria in The Gambia. The initial GWA scan included 2,500 children genotyped on the Affymetrix 500K GeneChip, and a replication study included 3,400 children. We used this to examine the performance of GWA methods in Africa. We found considerable population stratification, and also that signals of association at known malaria resistance loci were greatly attenuated owing to weak linkage disequilibrium (LD). To investigate possible solutions to the problem of low LD, we focused on the HbS locus, sequencing this region of the genome in 62 Gambian individuals and then using these data to conduct multipoint imputation in the GWA samples. This increased the signal of association, from P = 4 × 10(-7) to P = 4 × 10(-14), with the peak of the signal located precisely at the HbS causal variant. Our findings provide proof of principle that fine-resolution multipoint imputation, based on population-specific sequencing data, can substantially boost authentic GWA signals and enable fine mapping of causal variants in African populations
    corecore