3,361 research outputs found
Efficient DNA-polymer coupling in organic solvents:a survey of amide coupling, Thiol-Ene and Tetrazine-Norbornene chemistries applied to conjugation of Poly(N-Isopropylacrylamide)
A range of chemistries were explored for the efficient covalent conjugation of DNA to poly(N-isopropylacrylamide) (poly(NIPAM)) in organic solvents. Amide coupling and thiolâene Michael addition were found to be ineffective for the synthesis of the desired products. However, the inverse electron-demand DielsâAlder (DAinv) reaction between tetrazine (Tz) and norbornene (Nb) was found to give DNAâpolymer conjugates in good yields (up to 40%) in organic solvents (N,N-dimethylformamide, N,N-dimethylacetamide and N-methyl-2-pyrrolidone), and without the need for a catalyst. Methods for the synthesis of Tz-and Nb- functionalised DNA were developed, along with a post-polymerisation functionalisation strategy for the production of Tz-functionalised polymers
Probing the causes of thermal hysteresis using tunable N-agg micelles with linear and brush-like thermoresponsive coronas
Self-assembled thermoresponsive polymers in aqueous solution have great potential as smart, switchable materials for use in biomedical applications. In recent years, attention has turned to the reversibility of these polymersâ thermal transitions, which has led to debate over what factors influence discrepancies in the transition temperature when heating the system compared to the temperature obtained when cooling the system, known as the thermal hysteresis. Herein, we synthesize micelles with tunable aggregation numbers (Nagg) whose cores contain poly(n-butyl acrylate-co-N,N-dimethylacrylamide) (p(nBA-co-DMA)) and four different thermoresponsive corona blocks, namely poly(N-isopropylacrylamide) (pNIPAM), poly(N,N-diethylacrylamide) (pDEAm), poly(diethylene glycol monomethyl ether methacrylate) (pDEGMA) and poly(oligo(ethylene glycol) monomethyl ether methacrylate) (pOEGMA). By studying their thermoresponsive behavior, we elucidate the effects of changing numerous important characteristics both in the thermoresponsive chain chemistry and architecture, and in the structure of their self-assemblies. Our findings demonstrate large deviations in the reversibility between the self-assemblies and the corresponding thermoresponsive homopolymers; specifically we find that micelles whose corona consist of polymers with a brush-like architecture (pDEGMA and pOEGMA) exhibit irreversible phase transitions at a critical chain density. These results lead to a deeper understanding of stimuli-responsive self-assemblies and demonstrate the potential of tunable Nagg micelles for uncovering structureâproperty relationships in responsive polymer systems
Precise calibration of LIGO test mass actuators using photon radiation pressure
Precise calibration of kilometer-scale interferometric gravitational wave
detectors is crucial for source localization and waveform reconstruction. A
technique that uses the radiation pressure of a power-modulated auxiliary laser
to induce calibrated displacements of one of the ~10 kg arm cavity mirrors, a
so-called photon calibrator, has been demonstrated previously and has recently
been implemented on the LIGO detectors. In this article, we discuss the
inherent precision and accuracy of the LIGO photon calibrators and several
improvements that have been developed to reduce the estimated voice coil
actuator calibration uncertainties to less than 2 percent (1-sigma). These
improvements include accounting for rotation-induced apparent length variations
caused by interferometer and photon calibrator beam centering offsets, absolute
laser power measurement using temperature-controlled InGaAs photodetectors
mounted on integrating spheres and calibrated by NIST, minimizing errors
induced by localized elastic deformation of the mirror surface by using a
two-beam configuration with the photon calibrator beams symmetrically displaced
about the center of the optic, and simultaneously actuating the test mass with
voice coil actuators and the photon calibrator to minimize fluctuations caused
by the changing interferometer response. The photon calibrator is able to
operate in the most sensitive interferometer configuration, and is expected to
become a primary calibration method for future gravitational wave searches.Comment: 13 pages, 6 figures, accepted by Classical and Quantum Gravit
Precise calibration of LIGO test mass actuators using photon radiation pressure
Precise calibration of kilometer-scale interferometric gravitational wave
detectors is crucial for source localization and waveform reconstruction. A
technique that uses the radiation pressure of a power-modulated auxiliary laser
to induce calibrated displacements of one of the ~10 kg arm cavity mirrors, a
so-called photon calibrator, has been demonstrated previously and has recently
been implemented on the LIGO detectors. In this article, we discuss the
inherent precision and accuracy of the LIGO photon calibrators and several
improvements that have been developed to reduce the estimated voice coil
actuator calibration uncertainties to less than 2 percent (1-sigma). These
improvements include accounting for rotation-induced apparent length variations
caused by interferometer and photon calibrator beam centering offsets, absolute
laser power measurement using temperature-controlled InGaAs photodetectors
mounted on integrating spheres and calibrated by NIST, minimizing errors
induced by localized elastic deformation of the mirror surface by using a
two-beam configuration with the photon calibrator beams symmetrically displaced
about the center of the optic, and simultaneously actuating the test mass with
voice coil actuators and the photon calibrator to minimize fluctuations caused
by the changing interferometer response. The photon calibrator is able to
operate in the most sensitive interferometer configuration, and is expected to
become a primary calibration method for future gravitational wave searches.Comment: 13 pages, 6 figures, accepted by Classical and Quantum Gravit
Inverse scattering approach to multiwavelength Fabry-PĂ©rot laser design
A class of multiwavelength Fabry-Pérot lasers is introduced where the spectrum is tailored through a patterning of the cavity effective index. The cavity geometry is obtained using an inverse scattering approach and can be designed such that the spacing of discrete Fabry-Pérot lasing modes is limited only by the bandwidth of the inverted gain medium. A specific two-color semiconductor laser with a mode spacing in the THz region is designed, and measurements are presented demonstrating the simultaneous oscillation of the two wavelengths. The nonperiodic effective index profile of the particular two-color device considered is shown to be related to a Moiré or superstructure grating
Evolution of surface gravity waves over a submarine canyon
The effects of a submarine canyon on the propagation of ocean surface waves
are examined with a three-dimensional coupled-mode model for wave propagation
over steep topography. Whereas the classical geometrical optics approximation
predicts an abrupt transition from complete transmission at small incidence
angles to no transmission at large angles, the full model predicts a more
gradual transition with partial reflection/transmission that is sensitive to
the canyon geometry and controlled by evanescent modes for small incidence
angles and relatively short waves. Model results for large incidence angles are
compared with data from directional wave buoys deployed around the rim and over
Scripps Canyon, near San Diego, California, during the Nearshore Canyon
Experiment (NCEX). Wave heights are observed to decay across the canyon by
about a factor 5 over a distance shorter than a wavelength. Yet, a spectral
refraction model predicts an even larger reduction by about a factor 10,
because low frequency components cannot cross the canyon in the geometrical
optics approximation. The coupled-mode model yields accurate results over and
behind the canyon. These results show that although most of the wave energy is
refractively trapped on the offshore rim of the canyon, a small fraction of the
wave energy 'tunnels' across the canyon. Simplifications of the model that
reduce it to the standard and modified mild slope equations also yield good
results, indicating that evanescent modes and high order bottom slope effects
are of minor importance for the energy transformation of waves propagating
across depth contours at large oblique angles
Effect of Human Exogenous Leukocyte Interferon in Cytomegalovirus Infections
Human leukocyte interferon was injected into nine patients with cytomegalovirus infections; four of these patients were congenitally infected, and five had acquired infections. In three patients viruria was completely inhibited. In five patients viral excretion in the urine was only transiently inhibited. Viremia was not significantly suppressed. The lymphocyte response to phytohemagglutinin was suppressed in two patient
Recommended from our members
Sixteen years of bathymetry and waves at San Diego beaches.
Sustained, quantitative observations of nearshore waves and sand levels are essential for testing beach evolution models, but comprehensive datasets are relatively rare. We document beach profiles and concurrent waves monitored at three southern California beaches during 2001-2016. The beaches include offshore reefs, lagoon mouths, hard substrates, and cobble and sandy (medium-grained) sediments. The data span two energetic El Niño winters and four beach nourishments. Quarterly surveys of 165 total cross-shore transects (all sites) at 100âm alongshore spacing were made from the backbeach to 8âm depth. Monthly surveys of the subaerial beach were obtained at alongshore-oriented transects. The resulting dataset consists of (1) raw sand elevation data, (2) gridded elevations, (3) interpolated elevation maps with error estimates, (4) beach widths, subaerial and total sand volumes, (5) locations of hard substrate and beach nourishments, (6) water levels from a NOAA tide gauge (7) wave conditions from a buoy-driven regional wave model, and (8) time periods and reaches with alongshore uniform bathymetry, suitable for testing 1-dimensional beach profile change models
âThey Called Them Communists ThenââŠâWhat D'You Call âEm Now?ââŠâInsurgents?â. Narratives of British Military Expatriates in the Context of the New Imperialism
This paper addresses the question of the extent to which the colonial past provides material for contemporary actors' understanding of difference. The research from which the paper is drawn involved interview and ethnographic work in three largely white working-class estates in an English provincial city. For this paper we focus on ten life-history interviews with older participants who had spent some time abroad in the British military. Our analysis adopts a postcolonial framework because research participants' current constructions of an amorphous 'Other' (labelled variously as black people, immigrants, foreigners, asylum-seekers or Muslims) reveal strong continuities with discourses deployed by the same individuals to narrate their past experiences of living and working as either military expatriates or spouses during British colonial rule. Theoretically, the paper engages with the work of Frantz Fanon and Edward Said. In keeping with a postcolonial approach, we work against essentialised notions of identity based on 'race' or class. Although we establish continuity between white working-class military emigration in the past and contemporary racialised discourses, we argue that the latter are not class-specific, being as much the creations of the middle-class media and political elite
- âŠ