0

Inverse scattering approach to multiwavelength Fabry-Pérot laser design
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A class of multiwavelength Fabry-Pérot lasers is introduced where the spectrum is tailored through a
patterning of the cavity effective index. The cavity geometry is obtained using an inverse scattering approach
and can be designed such that the spacing of discrete Fabry-Pérot lasing modes is limited only by the band-
width of the inverted gain medium. A specific two-color semiconductor laser with a mode spacing in the THz
region is designed, and measurements are presented demonstrating the simultaneous oscillation of the two
wavelengths. The nonperiodic effective index profile of the particular two-color device considered is shown to

be related to a Moiré or superstructure grating.
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The most familiar laser cavity geometry is the Fabry-
Pérot (FP) laser, which comprises an active gain medium and
two external mirrors providing feedback for oscillation. In
this geometry the longitudinal lasing mode wavelengths are
determined by the half-wave resonance condition: A"
=2nL./m, where m=1,2,..., N is the free space wavelength
of the mth mode, L, is the cavity length, and n is the cavity
refractive index [1].

A fundamental limitation of the basic FP geometry is the
lack of any frequency selectivity other than that provided by
the gain medium. Because the gain bandwidth is much larger
than the FP mode spacing in typical semiconductor lasers,
more complex laser cavity geometries have been conceived
in order to control and manipulate semiconductor laser spec-
tra. For example, one dimensional systems such as the dis-
tributed feedback laser (DFB) provide high spectral purity
and temperature stability in device applications [2]. Transla-
tional symmetry determines the lasing modes of this struc-
ture without the need for a reflection from external mirrors.
Approaches to designing multiwavelength devices have also
been proposed, including DFB lasers with many spatial fre-
quencies present in the grating [3], and dual mode distributed
Bragg reflector lasers, which incorporate tunable mirror sec-
tions [4].

If we consider the interaction of the cavity modes with the
gain medium, the semiconductor FP laser geometry is decep-
tively simple. In a perfectly homogeneously broadened me-
dium, a single lasing mode should always dominate [5,6].
When driven above threshold, semiconductor FP lasers often
oscillate in many modes. This multimode behavior is char-
acteristic of inhomogeneously broadened gain media, despite
the fact that in a semiconductor the carriers are distributed in
continuous bands.

A key property of the FP laser in this respect is the fact
that all the cavity resonant wave vectors are equally spaced.
As a result, four-wave mixing (FWM) interactions, which
transfer power among modes, are cavity enhanced. In addi-
tion, carrier density pulsations at the intermode frequencies
and the finite linewidth enhancement or alpha factor lead to
an asymmetric contribution to the nonlinear gain in semicon-
ductor lasers [7-9]. This interaction also promotes multi-
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mode oscillation and can lead to mode hopping and complex
antiphased switching dynamics [10,11].

In this paper we revisit and extend the basic FP laser
geometry. We demonstrate that multiwavelength FP lasers
can be designed where, apart from the constraint imposed by
the half-wave resonance requirement, the distribution of las-
ing modes is chosen independent of the cavity length. The
basic FP cavity configuration and mode structure are main-
tained, with the manipulation of the lasing mode spectrum
achieved using a nonperiodic effective index profile. The
precise geometry is determined from the desired lasing spec-
trum through an inverse scattering approach [12,13].

Because of its fundamental significance, we present ex-
perimental measurements of a two-color semiconductor FP
laser with a primary mode spacing in the THz regime. Our
measurements demonstrate that the device oscillates simulta-
neously on two discrete FP modes, and without the require-
ment for an external cavity arrangement or other external
perturbation. In contrast to this ideal behavior associated
with weakly coupled modes, an otherwise identical plain FP
laser, with a modal spacing determined by the cavity length,
displays the mode hopping behavior and complex dynamics
associated with strong mode competition.

Consider the one-dimensional model of the FP cavity ge-
ometry represented in Fig. 1. The system comprises a FP
cavity of length L. with a spatially varying refractive index.
The mirror reflectivities are r; and r, (assumed real for sim-
plicity) and there are N additional index steps along the cav-
ity. For each section of the laser cavity (index i) we define
0;=n;ky,L;, where k_ is the free space wave number along z
and L; and n; are the length and the effective refractive index
of the ith section, respectively. The adjusted complex optical
path length across the cavity is then E?ﬁ“ 0;.

We set the background cavity effective index, n;=n, and
the effective index at the index step features, n,=n+An.
Suppose the transfer matrix 7 relates the right and left mov-
ing electric fields, E*(z), at the cavity mirrors in Fig. 1. Then
the lasing modes of the cavity are defined by the relation [13]
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FIG. 1. One dimensional model of a Fabry-Pérot laser cavity of
length L, and including N index steps. The cavity effective index is
n; while the additional features providing the index step (shaded
regions) have effective index n, as shown. All cavity sections are
numbered 1 <i<2N+1 beginning on the left. The matrix 7 relates
the left and right moving fields inside the cavity at the cavity mir-
rors. The mirror reflectivities are r; and r, as shown.

Ty = Typriry=Tyri—Tiors. (1)

From Eq. (1) one can show that the lasing condition at first
order in the index step can be written

A
1—ryrpexp(2i26,) = i—HE sin 6,;[r| exp(2i¢h;)
n .
j

+ryexp(2id)], 2)

where the quantities ¢; and d)}' are the optical path lengths
from the center of each additional feature to the left and right
facets, respectively. In deriving Eq. (2) we have made a first-
order Born approximation when calculating the transfer ma-
trix 7. In this way we neglect multiple scattering between
(and within) the additional features. It should be noted, how-
ever, that this expression for the lasing threshold condition
describes the coupling between each feature and the external
mirrors exactly.

If we neglect a factor describing the background losses
associated with each mode, for a vanishing index step, the
threshold gain for lasing is determined by the mirror losses.
We have 'y?:LZl In 1/rr,. In the perturbed case, a set of
self-consistent equations for the lasing modes is found by
making an expansion in Eq. (2) about the cavity resonance
condition: 261f=¢;’+¢;’=mw+ 8, [13], where &,,(<1) de-
termines the lasing mode frequency shift.

The inverse problem at first order is solved by choosing a
particular cavity resonance, m,, as an origin in wave number
space. We assume quarter wave features with sin t%j:l in
order that the intensity scattered by each feature at the wave-
length of mode m, is maximized. Taking the limit of a van-
ishing index step An, we at first neglect the optical path
length corrections which result from the introduction of the
additional features. In this limit distances along the cavity
are proportional to the corresponding change in the optical
path. One finds that the effect of the spatially varying refrac-
tive index is maximized where each feature is placed such
that a half wavelength subcavity at the wavelength of mode
my is formed between the feature and one of the external
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FIG. 2. (a) Feature density function (solid line). The dashed
lines are the negative of the feature density function in those inter-
vals where the Fourier transform of the function shown in the inset
is negative. Inset: Ideal threshold gain of modes in wave number
space. Lower panel: Laser cavity schematic indicating the locations
of the additional features. The device is high-reflection coated as
indicated. (b) Calculation of the threshold gain of modes for the
laser cavity schematically pictured in the lower panel of the figure.
The horizontal line is at the value of the mirror losses of the plain
cavity.

mirrors. The threshold gain can then be expressed at each
resonance, m, where m=my+Am, as ymzfyf:l))+(An/n)y$),
where

1
() = —— cos(mgr)cos(Amr)

" L(.Vrlrz
N
X > A(€)sin(2me mo)cos(2me;Am). (3)
j=1
In the above expression, the factor A(e)=r, exp(ejLCyfr(l)))

—ry exp(—€;L, 753)) and ¢; is the position of the center of each

feature measured from the center of the cavity as a fraction
of the cavity length.

Using Eq. (3) Fourier analysis can be used in order to
build up a particular threshold gain spectrum in wave num-
ber space. Because it represents the simplest system that il-
lustrates the application of classical multimode laser theory
[14], the multiwavelength device we describe here is the
two-color laser. The appropriate basis for this device is a pair
of sinc functions, y$)~sinc(Am+a/2)+sinc(Am—a/2).
This choice selects two modes, centered at m and with spac-
ing a modes, while leaving the other FP modes unperturbed.
In the inset of Fig. 2(a) we have plotted an idealized thresh-
old gain spectrum where the primary mode spacing is a=4
fundamental cavity modes. The Fourier transform of our ide-
alized threshold modulation function is cos(wae), for —1/2
<e=<1/2 and is zero otherwise.

The change in threshold of a given mode is determined by
the difference in the roundtrip amplitude gain to the left and
to the right of each feature. To determine the appropriate
distribution of features, we must therefore correct for the



0

variation of the amplitude of the threshold modulation with
position. We take the product of the Fourier transform of our
ideal threshold modulation function with the envelope func-
tion, [A(€;)]™". The absolute value of this product determines
the feature density function shown in Fig. 2(a), which is
sampled over the appropriate interval in order to approxi-
mately reproduce the idealized threshold gain spectrum. The
approximate feature positions are given by the solutions of
the following equation:

C f ! [A(x)] Y cos(max)|dx=j - 1/2. (4)

Here C is normalized to the number of features to be intro-
duced, and j=1,2,...,N.

For the two-color device considered the cavity is asym-
metric with one larger facet reflectivity (r;). This allows a
more uniform density of features along one side of the de-
vice center. Once the feature density function is sampled
correctly, feature positions are adjusted in order to satisfy the
correct phase requirement for resonance. A schematic picture
of the device, high-reflection coated as indicated, is shown in
the lower panel of Fig. 2. With respect to the lasing wave-
length of mode my in the cavity, where cos(wae;)>0, the
phase requirement corresponds to forming a half-wave reso-
nant subcavity between the corresponding feature and the
high-reflection coated mirror. For cos(mae;) <0, we form a
quarterwave subcavity at the same wavelength. In this way,
at each zero of the feature density function a 7/2 phase shift
is introduced into the index pattern along the device length.
Optical path corrections due to the introduction of the fea-
tures must also be accounted for when the final feature po-
sitions are calculated [13]. The calculated form of the thresh-
old gain spectrum is shown in Fig. 2(b) and is an excellent
approximation of the ideal form. Note that the device com-
prises a single, patterned amplifying section with both exter-
nal mirrors necessary to form the FP mode structure. Thus,
unlike distributed feedback approaches, the role of the inho-
mogeneous cavity effective index is simply to discriminate
between the various FP modes.

We note also that in the particular case of a two-color FP
laser formed by a pair of sinc functions as above, the refrac-
tive index pattern is related to that of a Moiré grating. The
index of refraction of a Moiré or superstructure grating is
given by [15]

n(z) =ny+ An cos(%)cos(%), (5)
where n is the average index, A is the Bragg period and A,
is the superstructure period. Fiber Bragg gratings of the
Moiré type are of considerable interest in slow-light and dis-
persion management systems. If we neglect the envelope
function A(e), sampling of the Fourier transform cos(mae)
and adjusting for resonance as described generates a finite
section of Moiré grating where the number of superstructure
periods between the cavity mirrors is equal to half the pri-
mary mode spacing. Inclusion of the envelope function then
determines a “sampled” Moiré grating section, where the av-
erage density is nonuniform and an additional 77/2 phase
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FIG. 3. (a) Below threshold spectrum of the two-color device of
Fig. 2. (b) Lasing spectrum at 30 mA. (c) Lasing spectrum at
60 mA. (d) Two-color lasing spectrum at 43.5 mA. (e) Above
threshold spectrum of a plain Fabry-Pérot device fabricated on the
same bar.

shift is required where A(e) vanishes. The region containing
this point, (e<0), is avoided in the asymmetric device con-
sidered here.

We now present experimental measurements of a ridge
wave guide FP laser fabricated to the design depicted in Fig.
2. The device is a multiquantum well InP/ALGa,ln;_,_,As
laser of length 350 um with a peak emission near 1.3 um.
The additional features are slotted regions etched into the
laser ridge wave guide. This technique is based on standard
optical lithography and does not require a regrowth step. The
laser was temperature stabilized at 25 °C to+0.01 °C and a
constant current was applied to the device. The laser emis-
sion was coupled into an optical fiber. A lens was used to
collimate the laser emission and another lens was used to
focus the collimated beam onto the fiber. Both lenses had
anti-reflection coatings and an optical isolator was placed
between the lenses to reduce the effect of external reflec-
tions. The fiber coupled laser emission was then character-
ized using an optical spectrum analyzer with 0.01 nm reso-
lution and an autocorrelator.

A series of spectra of the device of Fig. 2 are shown in
Fig. 3. Figure 3(a) shows the device spectrum below thresh-
old. One can see that the two primary modes are already
selected in this regime. Note the good agreement with the
calculation shown in Fig. 2, with the two primary modes
separated by four fundamental FP modes. The discrepancy in
the primary mode wavelengths between the theoretical cal-
culation and the experimental results can be attributed to a
difference in the refractive index of the device from that
anticipated and to our neglect of refractive index dispersion
in Fig. 2. As the current is increased the mode on the short
wavelength side reaches threshold first [Fig. 3(b)] and as the
current is increased further thermal effects lead to the peak
power shifting across the primary mode spacing to the long
wavelength side [Fig. 3(c)]. The lasing spectrum at 43.5 mA
is shown in Fig. 3(d). At this current the time averaged op-
tical power in the primary modes is approximately equal. For
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FIG. 4. (a) Enlarged spectrum showing the presence of a four-
wave mixing sideband. Inset: Background free intensity autocorre-
lation measurement showing mode beating at 480 GHz. (b) Time
traces of a primary mode (lower trace) and total device output (up-
per trace) showing essentially constant total output. Not shown is
the second primary mode output which is anticorrelated with the
first. (c) Time trace of the output of a single FP laser mode from the
device of Fig. 3(e). At this current the plain FP laser is exhibiting
mode-hopping behavior.

comparison, an above threshold spectrum from a plain FP
laser fabricated on the same bar is shown in Fig. 3(e).

Detail from the spectrum of Fig. 3(d) is plotted in Fig.
4(a). One can see sideband formation due to four wave mix-
ing (FWM) processes in the cavity. FWM is a third order
nonlinear process which occurs due to the formation of a
dynamic grating in the material complex index [16,17]. The
grating is formed through the beating of the primary modes
at v; and v, as shown in Fig. 3(d). The sideband shown
appears at a frequency of 2v,—v, with the scattering of the
primary mode at v; by the grating. Within the bandwidth of
the inverted semiconductor, the patterned FP cavity naturally
provides gain and resonant feedback for the FWM sideband,
which is slightly detuned from the amplified spontaneous
emission peak due to the material dispersion. The presence
of a large, narrow linewidth signal, implies that the two
modes are oscillating simultaneously with good phase stabil-
1ty.

Phase coherence of the primary modes implies an ultrafast
intensity modulation of the laser output. We measured this
mode beating in the cw output of the laser at the difference
frequency, v,—v;~480 GHz. The result of the background
free intensity autocorrelation measurement is shown in the
inset of Fig. 4(a) where the contrast ratio observed is close to
the theoretical limit of 3:1, expected for two sine waves of
equal amplitude. In the mode locking regime, the extension
of concepts described here to create a comb of discrete wave-
lengths can lead to compact sources of pulsed radiation with
THz repetition rates. In fact, the polarization associated with
the mode beating itself is a potential source of direct THz
radiation, generated in an intracavity process [18]. Such sys-
tems have received considerable interest on account of their
potential to enhance nonlinear interactions. Approaches to
intracavity wave mixing have tended to focus on engineering
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of the semiconductor heterostructure to support distinct op-
tical transitions and thus multiple lasing wavelengths
[19,20]. The extension of the FP cavity concept described
here represents a complimentary means to design such a sys-
tem where the suppression of unwanted longitudinal cavity
mode structure can further improve the efficiency.

We now apply the semi-classical theory of a homoge-
neously broadened two mode laser to our device near the
current of Fig. 3(d). In semi-classical laser theory, simulta-
neous lasing of two modes is possible if the net gain of each
mode is positive and the competition due to cross saturation
is sufficiently weakened by a large mode spacing and by the
spatial hole burning effect associated with the standing
waves of the FP cavity [14].

Measurements of time traces of the modal and total inten-
sity output of the two-color device are shown in Fig. 4(b). To
measure the temporal evolution of the individual lasing
modes the laser emission was spectrally resolved. The colli-
mated laser beam, which had passed through an optical iso-
lator, was incident on a grating (1200 lines/mm). The dif-
fracted beam was spatially filtered to isolate emission from
one mode. A 50:50 beam splitter was also inserted before the
grating allowing measurement of the total output power. The
bandwidth (50 MHz) of the system was limited by the detec-
tor used. In Fig. 4(b), we observe an essentially constant total
output and anticorrelated, enhanced intensity noise traces in
each of the two primary modes due to mode partition (a
single modal intensity time trace is shown for clarity) [21].
As is indicated by the spectral and autocorrelation measure-
ments, the two-color device is thus not exhibiting the mode
hopping behavior characteristic of multiwavelength lasers
with strongly coupled lasing modes [22]. The plain FP laser
of Fig. 3(e) also shows a constant total intensity, but analysis
of individual modal intensities reveals complex dynamics in-
cluding mode hopping behavior, an example of which is
shown in Fig. 4(c). This figure shows a sequence of sponta-
neous switching events where the longitudinal mode in ques-
tion switches between an “on” state with large intensity to an
“off” state with an intensity close to zero.

In the two-color device here, the coupling between the
primary modes is determined by various processes that have
different strengths depending on the separation between the
modes. These include static spectral hole burning, intraband
population pulsations, and carrier density pulsations. Be-
cause the characteristic time associated with interband pro-
cesses is large, the contribution of asymmetric nonlinear gain
due to the interband carrier density pulsations will be much
smaller in the two-color device, where the separation be-
tween modes is large. If we neglect the asymmetric contri-
bution, weak coupling of modes in the two-color device re-
quires (4/3)-[1+(w; - w,)?7, ]! <1, where w, ,=27v, , and
T, is the intraband relaxation time [9]. An estimated range of
values for 7, is 100-200 fs, which determines a minimum
spacing for the two modes of 460—920 GHz. Although this
estimate is in agreement with the actual modal separation
and stability properties observed, a systematic study of two-
color and other multiwavelength FP lasers will be of interest
in order to understand separately the roles of the primary
mode spacing and the total mode number in determining the
stability and dynamical properties of this family of devices.
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The stability property of the two-color lasing spectrum may
also lead to significant applications. For example, the THz
primary mode spacing of the devices makes them suitable for
the optical generation of THz radiation by photomixing. Be-
cause of their stable operation, they are also potentially a
simple switchable source of two widely spaced quasisingle
mode wavelengths as shown in Fig. 3.

In conclusion, we have introduced a class of multiwave-
length Fabry-Pérot lasers where the number and spacing of
the lasing modes is limited only by the bandwidth of the
active medium. Measurements of simultaneous lasing in a

specially designed two-color Fabry-Pérot cavity geometry
with THz mode spacing were presented. The inverse scatter-
ing approach to multiwavelength laser design described is
likely to open up new avenues for the fundamental studies of
semiconductor laser stability and dynamics. In addition, the
devices can provide interesting solutions to many applied
problems in optoelectronics and nonlinear optics.
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