984 research outputs found

    A prospective view of animal and human Fasciolosis

    Get PDF
    © 2016 The Authors. Parasite Immunology Published by John Wiley & Sons Ltd. Fasciolosis, a food-borne trematodiasis, results following infection with the parasites, Fasciola hepatica and Fasciola gigantica. These trematodes greatly affect the global agricultural community, infecting millions of ruminants worldwide and causing annual economic losses in excess of US $3 billion. Fasciolosis, an important zoonosis, is classified by WHO as a neglected tropical disease with an estimated 17 million people infected and a further 180 million people at risk of infection. The significant impact on agriculture and human health together with the increasing demand for animal-derived food products to support global population growth demonstrate that fasciolosis is a major One Health problem. This review details the problematic issues surrounding fasciolosis control, including drug resistance, lack of diagnosis and the threat that hybridization of the Fasciola species poses to future animal and human health. We discuss how these parasites may mediate their long-term survival through regulation and modulation of the host immune system, by altering the host immune homeostasis and/or by influencing the intestinal microbiome particularly in respect to concurrent infections with other pathogens. Large genome, transcriptome and proteomic data sets are now available to support an integrated One Health approach to develop novel diagnostic and control strategies for both animal and human disease

    Glycosidase activity in the excretory-secretory products of the liver fluke, Fasciola hepatica

    Full text link
    Fasciola hepatica secretes proteolytic enzymes and other molecules that are essential for host penetration and migration. This mixture may include enzymes required for the degradation of supramucosal gels, which defend epithelial surfaces against pathogen entry. These contain hydrated mucins that are heavily glycosylated. Excretory-secretory products (ES) from F. hepatica were examined for a range of glycosidase activities, using synthetic 4-methylumbelliferyl glycosides as substrates. The ES product contained at least 8 different glycosidase activities, the most abundant of which were β-N- acetylhexosaminidase, β-galactosidase and β-glucosidase. Alpha-fucosidase, β-glucuronidase, α-galactosidase, α-mannosidase and neuraminidase were also present. β-N- acetylhexosaminidase and β-galactosidase were present in multiple isoforms (at least 4), whereas β-glucosidase appeared to exist as one isoenzyme with a pI <3.8. All three enzymes had acidic pH optima (4.5-5.0). Ovine small intestinal mucin was degraded by ES at pH 4.5 or 7.0, with or without active cathepsin L, the major protease found in F. hepatica ES. The ability of F. hepatica ES to degrade mucin in the presence or absence of active cathepsin L suggests that cathepsin L is not essential for mucin degradation. The abundance of β-galactosidase and β-hexosaminidase in ES supports a role for these enzymes in mucin degradation

    Adrenal steroids modulate the immune response during Brucella abortus infection by a mechanism that depends on the regulation of cytokine production

    Get PDF
    Human brucellosis is a protean disease with a diversity of clinical signs and symptoms resulting from infection with Brucella species. Recent reports suggest a cross-regulation between adrenal steroids (cortisol and dehydroepiandrosterone [DHEA]) and the immune system. Monocytes and macrophages are the main replication niche for Brucella. Therefore, we investigated the role of adrenal hormones on the modulation of the immune response mediated by macrophages in B. abortus infection. Cortisol treatment during B. abortus infection significantly inhibits cytokine, chemokine, and MMP-9 secretion. In contrast, DHEA treatment had no effect. However, DHEA treatment increases the expression of costimulatory molecules (CD40, CD86), the adhesion molecule CD54, and major histocompatibility complex class I (MHC-I) and MHC-II expression on the surface of B. abortus-infected monocytes. It is known that B. abortus infection inhibits MHC-I and MHC-II expression induced by gamma interferon (IFN-γ) treatment. DHEA reverses B. abortus downmodulation of the MHC-I and -II expression induced by IFN-γ. Taken together, our data indicate that DHEA immune intervention may positively affect monocyte activity during B. abortus infection.Fil: Gentilini, Maria Virginia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Inmunología, Genética y Metabolismo. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Inmunología, Genética y Metabolismo; Argentina. Universidad de Buenos Aires. Facultad de Medicina. Hospital de Clínicas General San Martín; ArgentinaFil: Velasquez, Lis Noelia. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Medicina Experimental. Academia Nacional de Medicina de Buenos Aires. Instituto de Medicina Experimental; ArgentinaFil: Barrionuevo, Paula. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Medicina Experimental. Academia Nacional de Medicina de Buenos Aires. Instituto de Medicina Experimental; ArgentinaFil: Arriola Benitez, Paula Constanza. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Inmunología, Genética y Metabolismo. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Inmunología, Genética y Metabolismo; Argentina. Universidad de Buenos Aires. Facultad de Medicina. Hospital de Clínicas General San Martín; ArgentinaFil: Giambartolomei, Guillermo Hernan. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Inmunología, Genética y Metabolismo. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Inmunología, Genética y Metabolismo; Argentina. Universidad de Buenos Aires. Facultad de Medicina. Hospital de Clínicas General San Martín; ArgentinaFil: Delpino, María Victoria. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Inmunología, Genética y Metabolismo. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Inmunología, Genética y Metabolismo; Argentina. Universidad de Buenos Aires. Facultad de Medicina. Hospital de Clínicas General San Martín; Argentin

    Reconstructing transmission trees for communicable diseases using densely sampled genetic data.

    Get PDF
    Whole genome sequencing of pathogens from multiple hosts in an epidemic offers the potential to investigate who infected whom with unparalleled resolution, potentially yielding important insights into disease dynamics and the impact of control measures. We considered disease outbreaks in a setting with dense genomic sampling, and formulated stochastic epidemic models to investigate person-to-person transmission, based on observed genomic and epidemiological data. We constructed models in which the genetic distance between sampled genotypes depends on the epidemiological relationship between the hosts. A data augmented Markov chain Monte Carlo algorithm was used to sample over the transmission trees, providing a posterior probability for any given transmission route. We investigated the predictive performance of our methodology using simulated data, demonstrating high sensitivity and specificity, particularly for rapidly mutating pathogens with low transmissibility. We then analyzed data collected during an outbreak of methicillin-resistant Staphylococcus aureus in a hospital, identifying probable transmission routes and estimating epidemiological parameters. Our approach overcomes limitations of previous methods, providing a framework with the flexibility to allow for unobserved infection times, multiple independent introductions of the pathogen, and within-host genetic diversity, as well as allowing forward simulation.Funding received from the following: The European Community [Mastering Hospital Antimicrobial Resistance (MOSAR) network contract LSHP-CT-2007-037941]. The National Institute of General Medical Sciences of the National Institutes of Health under award number U54GM088558. The UK Medical Research Council (Unit Programme number U105260566). The UKCRC Translational Infection Research Initiative (MRC Grant number G1000803) and Public Health England. The Medical Research Council and Department for International Development (Grant number MR/K006924/1). The Mahidol Oxford Tropical Medicine Research Unit is part of the Wellcome Trust Major Overseas Programme in SE Asia (Grant number 106698/Z/14/Z).This is the final version of the article. It first appeared from the Institute of Mathematical Statistics via http://dx.doi.org/10.1214/15-AOAS89

    Moving from information and collaboration to action: report from the 3rd International Dog Health Workshop, Paris in April 2017

    Get PDF
    Abstract Background Breed-related health problems in dogs have received increased focus over the last decade. Responsibility for causing and/or solving these problems has been variously directed towards dog breeders and kennel clubs, the veterinary profession, welfare scientists, owners, regulators, insurance companies and the media. In reality, all these stakeholders are likely to share some responsibility and optimal progress on resolving these challenges requires all key stakeholders to work together. The International Partnership for Dogs (IPFD), together with an alternating host organization, holds biennial meetings called the International Dog Health Workshops (IDHW). The Société Centrale Canine (French Kennel Club) hosted the 3rd IDHW, in Paris, in April, 2017. These meetings bring together a wide range of stakeholders in dog health, science and welfare to improve international sharing of information and resources, to provide a forum for ongoing collaboration, and to identify specific needs and actions to improve health, well-being and welfare in dogs. Results The workshop included 140 participants from 23 countries and was structured around six important issues facing those who work to improve dog health. These included individualized breed-specific strategies for health and breeding, extreme conformations, education and communication in relation to antimicrobial resistance, behavior and welfare, genetic testing and population-based evidence. A number of exciting actions were agreed during the meeting. These included setting up working groups to create tools to help breed clubs accelerate the implementation of breed-health strategies, review aspects of extreme conformation and share useful information on behavior. The meeting also heralded the development of an online resource of relevant information describing quality measures for DNA testing. A demand for more and better data and evidence was a recurring message stressed across all themes. Conclusions The meeting confirmed the benefits from inclusion of a diverse range of stakeholders who all play relevant and collaborative parts to improve future canine health. Firm actions were set for progress towards improving breed-related welfare. The next international workshop will be in the UK in 2019 and will be organized by the UK Kennel Club

    Demography and disorders of German Shepherd Dogs under primary veterinarycare in the UK

    Get PDF
    The German Shepherd Dog (GSD) has been widely used for a variety of working roles. However, concerns for the health and welfare of the GSD have been widely aired and there is evidence that breed numbers are now in decline in the UK. Accurate demographic and disorder data could assist with breeding and clinical prioritisation. The VetCompassTM Programme collects clinical data on dogs under primary veterinary care in the UK. This study included all VetCompassTM dogs under veterinary care during 2013. Demographic, mortality and clinical diagnosis data on GSDs were extracted and reported

    High resolution dynamical mapping of social interactions with active RFID

    Get PDF
    In this paper we present an experimental framework to gather data on face-to-face social interactions between individuals, with a high spatial and temporal resolution. We use active Radio Frequency Identification (RFID) devices that assess contacts with one another by exchanging low-power radio packets. When individuals wear the beacons as a badge, a persistent radio contact between the RFID devices can be used as a proxy for a social interaction between individuals. We present the results of a pilot study recently performed during a conference, and a subsequent preliminary data analysis, that provides an assessment of our method and highlights its versatility and applicability in many areas concerned with human dynamics

    mRNA profiling of the cancer degradome in oesophago-gastric adenocarcinoma.

    Get PDF
    BACKGROUND: Degradation of the extracellular matrix is fundamental to tumour development, invasion and metastasis. Several protease families have been implicated in the development of a broad range of tumour types, including oesophago-gastric (OG) adenocarcinoma. The aim of this study was to analyse the expression levels of all core members of the cancer degradome in OG adenocarcinoma and to investigate the relationship between expression levels and tumour/patient variables associated with poor prognosis. METHODS: Comprehensive expression profiling of the protease families (matrix metalloproteinases (MMPs), members of the ADAM metalloproteinase-disintegrin family (ADAMs)), their inhibitors (tissue inhibitors of metalloproteinase), and molecules involved in the c-Met signalling pathway, was performed using quantitative real-time reverse transcription polymerase chain reaction in a cohort of matched malignant and benign peri-tumoural OG tissue (n=25 patients). Data were analysed with respect to clinico-pathological variables (tumour stage and grade, age, sex and pre-operative plasma C-reactive protein level). RESULTS: Gene expression of MMP1, 3, 7, 9, 10, 11, 12, 16 and 24 was upregulated by factors >4-fold in OG adenocarcinoma samples compared with matched benign tissue (P<0.01). Expression of ADAM8 and ADAM15 correlated significantly with tumour stage (P=0.048 and P=0.044), and ADAM12 expression correlated with tumour grade (P=0.011). CONCLUSION: This study represents the first comprehensive quantitative analysis of the expression of proteases and their inhibitors in human OG adenocarcinoma. These findings implicate elevated ADAM8, 12 and 15 mRNA expression as potential prognostic molecular markers

    Simulation of an SEIR infectious disease model on the dynamic contact network of conference attendees

    Get PDF
    The spread of infectious diseases crucially depends on the pattern of contacts among individuals. Knowledge of these patterns is thus essential to inform models and computational efforts. Few empirical studies are however available that provide estimates of the number and duration of contacts among social groups. Moreover, their space and time resolution are limited, so that data is not explicit at the person-to-person level, and the dynamical aspect of the contacts is disregarded. Here, we want to assess the role of data-driven dynamic contact patterns among individuals, and in particular of their temporal aspects, in shaping the spread of a simulated epidemic in the population. We consider high resolution data of face-to-face interactions between the attendees of a conference, obtained from the deployment of an infrastructure based on Radio Frequency Identification (RFID) devices that assess mutual face-to-face proximity. The spread of epidemics along these interactions is simulated through an SEIR model, using both the dynamical network of contacts defined by the collected data, and two aggregated versions of such network, in order to assess the role of the data temporal aspects. We show that, on the timescales considered, an aggregated network taking into account the daily duration of contacts is a good approximation to the full resolution network, whereas a homogeneous representation which retains only the topology of the contact network fails in reproducing the size of the epidemic. These results have important implications in understanding the level of detail needed to correctly inform computational models for the study and management of real epidemics
    • …
    corecore