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Whole genome sequencing of pathogens from multiple hosts in an epi-
demic offers the potential to investigate who infected whom with unparal-
leled resolution, potentially yielding important insights into disease dynam-
ics and the impact of control measures. We considered disease outbreaks in
a setting with dense genomic sampling, and formulated stochastic epidemic
models to investigate person-to-person transmission, based on observed ge-
nomic and epidemiological data. We constructed models in which the genetic
distance between sampled genotypes depends on the epidemiological rela-
tionship between the hosts. A data-augmented Markov chain Monte Carlo al-
gorithm was used to sample over the transmission trees, providing a posterior
probability for any given transmission route. We investigated the predictive
performance of our methodology using simulated data, demonstrating high
sensitivity and specificity, particularly for rapidly mutating pathogens with
low transmissibility. We then analyzed data collected during an outbreak of
methicillin-resistant Staphylococcus aureus in a hospital, identifying proba-
ble transmission routes and estimating epidemiological parameters. Our ap-
proach overcomes limitations of previous methods, providing a framework
with the flexibility to allow for unobserved infection times, multiple indepen-
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dent introductions of the pathogen and within-host genetic diversity, as well
as allowing forward simulation.

1. Introduction. A fundamental aim in the analysis of infectious disease epi-
demics is to identify who infected whom, however, achieving this is challenging,
since transmission dynamics are generally unobserved. A probabilistic estimation
of the transmission tree based on all available data offers many potential benefits.
In particular, this can lead to improved understanding of transmission dynamics,
provide a mechanism to quantify factors associated with heightened transmissibil-
ity and susceptibility to carriage and infection, and help identify effective interven-
tions to reduce transmission. Pathogen typing can be used to cluster genetically
similar isolate samples, which can rule out potential transmission routes. Whole
genome sequence (WGS) data offers maximal discriminatory power through the
identification of individual point mutations, or single nucleotide polymorphisms
(SNPs), potentially leading to more accurate transmission tree reconstructions than
hitherto possible. However, the joint analysis of genetic and surveillance data poses
several challenges, as the relationship between epidemic and evolutionary dynam-
ics is complex [Ypma, van Ballegooijen and Wallinga (2013)].

To date, genomic data have primarily been used to analyse transmission at a
population rather than an individual level. This typically relies on a broad sample
of individuals from a large population, with the aim of estimating past population
dynamics over a long period of time. Phylogenetic analyses have been used to
infer patterns of large-scale geographic spread [Harris et al. (2010)]. Coalescent
theory has been used with such data to estimate, among other things, fluctuations
in population size and transmission parameters [Pybus et al. (2001), Volz et al.
(2009)]. Methods have also been described to estimate transmission parameters
by combining sequence data and time series incidence data [Rasmussen, Ratmann
and Koelle (2011)].

In contrast, we focus on individual-level transmission, using high-frequency ge-
nomic samples from a subpopulation (e.g., hospital, school, jail, farm, commu-
nity), with the aim of reconstructing transmission routes. Such sampling presents
more of a challenge in terms of resources and data collection. However, with
falling sequencing costs, gathering genomic data is rapidly becoming a feasible
component of outbreak investigations, as demonstrated by recent studies [Gardy
et al. (2011), Köser et al. (2012), Snitkin et al. (2012)]. We aim to estimate the
transmission tree, a graph representing the spread of a pathogen between indi-
viduals, comprising nodes (cases, which may be defined as infected or colonized
persons depending on the context) and directed edges (transmission events). Edges
may additionally be associated with a transmission time. A transmission tree may
be composed of multiple unconnected subtrees, each representing independent
chains of transmission. Each transmission chain has an origin, representing a new
introduction of the pathogen into the population. While in some situations it may
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be reasonable to regard the tree as fully connected (i.e., only one origin exists),
more generally, multiple introductions of the pathogen from external sources must
be accounted for.

A number of approaches to reconstruct transmission trees for communicable
pathogens using densely sampled genomic data have been described in recent
years. Many methods have been based around the construction of phylogenetic
trees, which describe the inferred evolutionary relationships between pathogen
samples, and can be fit to sequence data under various evolutionary models. The
phylogenetic tree is a bifurcating structure in which external nodes represent sam-
pled isolates, while internal nodes represent the most recent common ancestor of
its descendants. Internal nodes are similarly linked, such that the structure is fully
connected. Since phylogenetic trees may be topologically dissimilar to transmis-
sion trees [Pybus and Rambaut (2009), Romero-Severson et al. (2014)], interpret-
ing phylogenetic proximity as epidemiological linkage can be misleading. Further-
more, phylogenetic trees are undirected, leaving ambiguity around the direction of
transmission even if the transmission tree is topologically identical.

Phylogenetic trees have been used in conjunction with contact tracing data us-
ing ad hoc approaches to rule out possible transmission links [Bryant et al. (2013),
Gardy et al. (2011)], while other approaches have developed more formal meth-
ods to make use of phylogenetic trees to infer transmission trees. For instance,
Ypma, van Ballegooijen and Wallinga (2013) developed a method to sample over
both the transmission and phylogenetic tree given a set of sequence data, ensur-
ing both structures remain consistent with one another. This approach required
the specification of a model to describe within-host pathogen dynamics, which re-
main poorly understood for the majority of pathogens. Similarly, Numminen et al.
(2014) describe an importance sampling approach in which both phylogeny and
transmission tree are sampled from proposal distributions. This approach required
sequence data to be partitioned into clusters pre-analysis and the topology of the
phylogeny to be fixed, but avoided the computational complexity associated with
Markov chain Monte Carlo (MCMC) based methods.

Alternatively, a second class of reconstruction methods avoids phylogenetic tree
inference, using models in which transmission routes are weighted by a function of
observed genetic distance. Simply identifying the source of infection by selecting
the host carrying the most genetically similar sampled isolate has been suggested
[Jombart et al. (2011)], although this neglects the role of within-host diversity and
sampling time, as well as uncertainty surrounding the times of infection. While
more sophisticated approaches allow for uncertainty in transmission time and pro-
vide a more realistic model for the accumulation of mutations over time, hosts
are characterized by a single pathogen genotype [Mollentze et al. (2014), Morelli
et al. (2012), Ypma et al. (2012)]. Jombart et al. (2014) describe a Bayesian data-
augmentation approach making use of genetic distance data to infer likely trans-
mission events, dates of infections and unobserved cases. The approach assumes
known distributions of the generation interval and time from infection to isolate
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collection, and does not allow for within-host diversity or explicitly account for
imported cases (though multiple unconnected trees can be allowed for). These as-
sumptions mean that, while the approach may be suitable for an acute infection in
an outbreak scenario, it is not appropriate for pathogens such as S. aureus, where
long-term carriage is common, the generation interval is not well defined, and
where within-host diversity can be substantial.

Of the above methods, all assume that a single genotype is sampled from each
host, with the exception of Numminen et al. (2014). This assumption can lead to
poor tree inference in the presence of within-host diversity [Worby et al. (2014)].
Only the approach developed by Mollentze et al. (2014) can identify importations;
the remainder of the methods assume the transmission tree is fully connected. Most
methods described assume infection times are known with certainty. It is likely to
be extremely useful to relax each of these assumptions in most infectious dis-
ease settings. Finally, while the importance sampling method by Numminen et al.
(2014) can accommodate various transmission models, the remainder consider in-
stead the probability of a transmission tree linking the set of infected individuals,
ignoring the probability of susceptible individuals avoiding infection.

Here we describe a generalized approach to transmission tree reconstruction that
overcomes these limitations and makes use of both molecular typing information
and known exposure data. A key novelty of our approach is that we model the ge-
netic distances between sequences rather than the microevolution of the sequences
themselves. This offers a flexible framework in which multiple independent intro-
ductions of the pathogen and within-host diversity may be considered, as well as
the transmission process itself. This approach avoids the need to make any assump-
tions about the within-host pathogen population dynamics, which, in general, are
poorly understood. Furthermore, our proposed framework allows data to be simu-
lated forward in time, a feature lacking in the majority of existing methods (with
reverse time simulation typically required in phylogenetic methods, and only an
incomplete set of genetic distances simulated from other approaches), which is of
fundamental importance in predictive modelling and model evaluation.

2. Methods. The importance of identifying transmission pathways in hospital
epidemiology is one of the major motivations for our work. We therefore describe
our approach for this setting and analyse real and simulated hospital epidemic
data. Since infection is often asymptomatic in this setting, even with frequent pa-
tient screening, epidemics are only partially observed. Furthermore, patients may
be admitted to the ward already infected (importations), which requires considera-
tion of multiple disconnected transmission trees. Our approach accounts for these
complications. In line with most literature on hospital-associated infections, we
subsequently use the term “colonized” to refer to patients who are either symp-
tomatically or asymptomatically infected with the pathogen.

We observe a set of n patients admitted and discharged from a hospital over a
study period. For each patient (j , say), we observe the day of admission taj and
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discharge tdj , the days and results of screening tests (positive or negative for the
pathogen) taken during their stay. We denote the set of all screening results by X.
We also suppose that some (not necessarily all) of the positive swabs have a cor-
responding sequenced isolate, that is, we have genetic information related to some
of the positive tests. From a total of ns sequenced isolates, we derive a symmet-
ric pairwise genetic distance matrix � = (ψa,b)a,b≤ns , with the genetic element
ψa,b giving the genetic distance between isolates a and b. If colonized, the day of
colonization for patient j is denoted tcj , and the source of infection, sj , is equal
to the ID of the patient from whom the pathogen was acquired or equal to zero
if the patient was already colonized on admission. These quantities specify the
transmission tree, but are typically unobserved. For patients who are never colo-
nized, tcj = sj = ∞. We denote the set of colonization times and routes of infection
by T . We can write the likelihood of observing genetic and screening data, given
model-specific parameters θ , as

π(X,�|θ) =
∫
T

π(�|X,T , θ)π(X|T , θ)π(T |θ)dT .(1)

We now describe the distinct components of our model, which govern the trans-
mission dynamics (π(T |θ)), the observation of screening data (π(X|T , θ)) and the
generation of genetic diversity π(�|X,T , θ).

2.1. Transmission model. We first define a stochastic model which describes
both pathogen transmission and the genetic distances arising between genotypes
sampled from any two individuals. Each patient j, j = 1, . . . , n, is admitted to
the ward, independently carrying the pathogen with probability p, and has marker
variable φj , equal to 1 if the patient is positive on admission and zero otherwise.
We assumed homogeneous mixing, such that each colonized patient has equivalent
contact with each susceptible individual. The rate of transmission to a given sus-
ceptible patient on day t is then βC(t), where C(t) is the number of colonized pa-
tients on day t , and β is the transmission rate per colonized individual. We assumed
that individuals colonized on day t may transmit the pathogen from day t + 1 un-
til their discharge. Working in discrete time using daily intervals, the probability
that a given susceptible patient avoids colonization on day t is exp(−βC(t)), thus,
acquisition occurs with probability 1 − exp(−βC(t)). Each patient has the same
chance of contacting any other patient in this model, and we note that transmis-
sion is often indirect, via the hands of healthcare workers (HCWs) [Albrich and
Harbarth (2008), Cooper, Medley and Scott (1999), Pittet et al. (2008)]. Given an
individual acquires the pathogen on day t , the probability that the source of trans-
mission is a particular positive individual is simply 1/C(t), since it is assumed
that colonized patients have an equal potential to transmit. More generally, this
probability will be the transmission pressure from the potential source divided by
the total transmission pressure at time t . The model for transmission dynamics, T ,
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can then be given as

π(T |θ) = p
∑

j φj (1 − p)n−∑
j φj

×
n∏

i=1

(
1tci =tai

+ 1tci �=tai
exp

{
−

min(tci −1,tdi )∑
t=tai

βC(t)

})
(2)

× ∏
j :tcj <∞,

φj=0

(1 − exp{−βC(tcj )}
C(tcj )

)
,

where 1x is the indicator function, returning 1 if the condition x is true and zero
otherwise.

2.2. Observation model. During each patient’s stay in the hospital, regular
screening is carried out to detect carriage of the pathogen. We assume that the
test is highly specific, but imperfectly sensitive—that is, false positive results are
not possible, but a positive patient is correctly screened positive with probability z

(test sensitivity) [Perry et al. (2004)]. Let TP(X,T ), FN(X,T ) and FP(X,T ) be
the total number of true positive, false negative and false positive results in the
screening data, respectively, given the set of colonization times. The likelihood of
observing the screening results, given test sensitivity and transmission times, is

π(X|T , θ) = zTP(X,T )(1 − z)FN(X,T )1FP(X,T )=0.(3)

2.3. Genetic distance models. We defined the genetic distance to be the ob-
served number of SNPs between isolates, though other metrics are possible. The
genetic distance between any two isolates is assumed to be drawn from some prob-
ability distribution, which in general can depend on any desired features of the two
samples in question or the hosts from whom they were sampled, such as their relat-
edness in terms of transmission. We assume that genetic distances are perfectly ob-
served, and that insertions, deletions and recombinant sections are removed from
the genome such that the genetic distance is representative of the accumulation of
SNPs.

The true distribution of the observed number of SNPs between two samples is
complex and depends on the mutation rate and the time of their most recent com-
mon ancestor, which in turn is dependent on the within-host pathogen population
dynamics, as well as the effective transmission inoculum size. Since such factors
are still poorly understood for most pathogens, we supposed that the distribution
could be approximated by either a Poisson or a geometric distribution, dependent
on the relationship between the sampled hosts. This relationship could be mod-
eled a number of ways, but here we focus on two particular models, allowing for
genetic diversity to be generated through alternative dynamics.
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2.3.1. Transmission diversity model. The first model, the transmission diver-
sity model, discriminates between individuals in a transmission chain under the
assumption that the expected genetic diversity changes predictably as sampled in-
dividuals are further apart in the tree. Typically, one would expect that distances
will increase along the chain, due to the accumulation of mutations within each
host. Each increase in the tree distance between nodes results in the expected ge-
netic distance changing at a rate governed by a parameter k, which we call the
transmission diversity factor. Distances between isolates taken from individuals in
unrelated transmission chains are assumed to be drawn from a different specified
distribution.

We proposed a distribution to describe the genetic distance between two iso-
lates, given the relationship between their carriers in the transmission tree. For
isolates x and y, we defined t (x, y) to be the number of links which separate the
isolates in the transmission tree, with t (x, y) = ∞ if x and y are sampled from
separate chains. For two samples taken from the same host, we have t (x, y) = 0.
Under the transmission diversity model, we used the following geometric distribu-
tion: for d = 0,1, . . . ,

P (ψx,y = d) =
{

γ kt(x,y)
(
1 − γ kt(x,y)

)d
, t (x, y) < ∞,

γG(1 − γG)d, t (x, y) = ∞,
(4)

where γ kt(x,y) ∈ [0,1]. Here, the parameter γG represents genetic diversity be-
tween samples belonging to different transmission chains. The parameter γ is
the geometric parameter for genetic distances occurring in the same transmission
chain, while k denotes the factor by which this parameter is changed upon an ad-
ditional transmission link between the samples.

The expected genetic distance between samples is then (1 − γ kz)/γ kz for sam-
ples separated by z transmission links or (1 − γG)/γG for samples belonging to
independent chains. The likelihood contribution for the nth observed sequence is
then just the product of probabilities for the n − 1 genetic distances to previously
observed sequences. Under this model, the likelihood of observing the genetic dis-
tance matrix � , given the transmission tree structure, is

π(�|X,T , θ) =
ns∏

y=2

y∏
x=1

(
1t (x,y)<∞γ kt(x,y)(1 − γ kt(x,y))ψx,y

(5)
+ 1t (x,y)=∞γG(1 − γG)ψx,y

)
.

We note that in regular circumstances, we would expect k ≤ 1, indicating steady
or increasing diversity along a transmission chain. However, we allow for k to take
values greater than 1, as this may highlight sampling bias (e.g., hosts with greater
within-host diversity sampled more frequently), which would not be revealed with
a fixed upper bound of 1.
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The true distribution of genetic distances between independent transmission
chains is dependent on the population which enters the hospital already colonized.
This distribution will depend upon the strain types circulating in the community
and may be multimodal, reflecting clusters of similar strains. In the absence of lo-
cal and regional sampling data which would be necessary to obtain a more suitable
approximation, we use the geometric distribution, assuming strains are more likely
to be similar than dissimilar. Our second model is designed to avoid the challenge
of approximating this distribution.

2.3.2. Importation structure model. The second model, the importation struc-
ture model, assumes that imported cases are assigned into genetically similar
groups. An individual who acquires the pathogen from another person in a given
group is assigned the same group. An importation may belong to a previously ob-
served group, despite not being connected in the transmission chain. The distance
between each pair of isolates in a particular group follows the same distribution,
regardless of the tree distance between the nodes, while we expect that isolates
belonging to different groups to be genetically further apart. The number, and
composition, of groups is unobserved, so must be inferred. Under the importation
structure model, we have, for d = 0,1,2, . . . ,

P (ψx,y = d) =
{

γ (1 − γ )d, x and y in the same group,

γG(1 − γG)d, otherwise.
(6)

Similar to the previous model, the expected genetic distance between samples
is then (1 − γ )/γ for samples within the same group or (1 − γG)/γG for samples
belonging to different groups. It is necessary to introduce some additional notation
for this model: let gj be the group to which colonized individual j belongs (equal
to zero if not colonized). We estimate an additional parameter, c, which gives the
probability that the strain of an imported case belongs to an existing group. Under
this model, the likelihood of observing the genetic distance matrix � , given the
transmission tree structure and group memberships g, is

π(�|X,T ,g, θ) =
ns∏

y=2

y∏
x=1

(
1gx=gyγ (1 − γ )ψx,y + 1gx �=gyγG(1 − γG)ψx,y

)
.(7)

Furthermore, the likelihood of observing nc groupings among the
∑

j φj impor-
tations is

π(g|θ) = cnc(1 − c)
∑

j φj−nc .(8)

2.4. Inference methods. To allow for unobserved transmission dynamics,
namely, the set of transmission days and sources T = {tc, s} (and, additionally,
the set of group memberships g under the importation structure model), we used a
Bayesian framework and employed a data augmented MCMC algorithm [Tanner
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and Wong (1987)] to sample over this space. Individuals with no observed positive
swabs may also have been colonized, and we allow for this possibility by sampling
over this space. A combination of Metropolis–Hastings and Gibbs sampling was
used to draw samples from the parameter space θ , consisting of the parameters
{p, z,β, γ, γG, k} for the transmission diversity model and, additionally, c under
the importation structure model. This approach is an extension of the analytical
frameworks previously used to estimate transmission parameters given unobserved
infection days [Kypraios et al. (2010), O’Neill and Roberts (1999), Worby et al.
(2013)]. In addition to sampling transmission days, we specify a model for ge-
netic data in this approach, sampling transmission routes to identify the posterior
transmission tree.

Transmission trees were sampled by randomly drawing new colonization days
and sources, such that every proposed tree had a nonzero likelihood. Full details
of the tree sampling methods, acceptance probabilities and MCMC algorithm are
provided in the supplementary material [Worby et al. (2016)]. By calculating the
proportion of total samples for which particular transmission routes existed, we de-
rived a tree with edges weighted by posterior probability. The R package “bitrugs”
(Bayesian Inference of Transmission Routes Using Genome Sequences) contains
code to implement the MCMC algorithm and is included in the online supplemen-
tary materials.

Except where mentioned, parameters p, z, γ , γG, c were assigned Beta(1,1)

prior densities. The parameters β and k were assumed to be exponentially dis-
tributed a priori, with rate 10−6.

2.5. Data. We first investigated the performance of our models using simu-
lated hospital data, generated under several different scenarios. Code to simulate
data is included in an R package, available in the supplementary materials. We as-
sessed tree accuracy by comparing the simulated true and estimated tree, and ex-
amining the receiver operating characteristic (ROC) curve [Krzanowski and Hand
(2009)], identifying scenarios in which the model performed well and poorly. We
compared our estimated trees to the “uninformed” tree,—that is, an estimate of
transmission routes excluding genomic data, assigning each potential source an
equal weight. The ROC for the uninformed tree is calculated under the assumption
that the times of infection are known, an advantage over our estimation method.
Calculating the area under the curve (AUC) and comparing this with the unin-
formed tree can indicate the improvement in accuracy over the naïve structure.

We then applied our methods to methicillin-resistant S. aureus (MRSA) car-
riage and sequence data collected from a special care baby unit in Cambridge,
UK, during an outbreak in 2011. These data comprised a full set of patient admis-
sion and discharge days, MRSA carriage screening results and sequenced genomes
of a subset of positive results. The genomic data have been described previously
by Harris et al. (2013), who combined genomic analysis and contact tracing to
estimate routes of infection within and outside of the hospital ward.
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3. Results.

3.1. Simulated data. We simulated several datasets under the two genetic dis-
tance models described in order to determine the ability of our estimation approach
to recover the transmission tree as well as the parameter values. We simulated 500
patient admissions over 250 days, and varied model parameters to determine their
impact on the ability to identify transmission routes (see supplementary material
for more details on simulation). We also investigated the accuracy of tree recon-
struction when fitting the model to data simulated under the alternative model.
For a range of plausible parameter values we were able to recover the transmis-
sion tree well, consistently outperforming the uninformed transmission tree. Un-
der both models, larger outbreaks tended to be associated with more uncertainty
surrounding the source of infection. Figure 1 shows a simulated hospital outbreak,
comprising several unconnected subtrees. Also shown is the uninformed transmis-
sion tree, in which edges are placed with equal weight for all potential sources
of transmission, and our reconstruction under the transmission diversity model.
While most transmission events are successfully recovered, there is uncertainty
within the largest transmission chains which contain several nodes, as well as, in
some cases, uncertainty as to whether a case was imported or not. For simulations
with an increased transmission rate, a higher number of genetically similar new in-
fections were seen in the ward at any given time, increasing tree uncertainty (Fig-
ure 2A). The transmission diversity model allows the length of the transmission
chain to have an impact on the expected genetic distances between two given iso-

FIG. 1. A hospital outbreak was simulated, and we attempted to recover the routes of transmis-
sion. Patients are represented by open or closed circles, representing acquisitions or importations,
respectively, and transmission routes are shown as arrows. (A) The true transmission tree. (B) The
uninformed transmission tree, in which all colonized patients at the time of transmission are consid-
ered equally likely sources of infection. (C) The estimated transmission tree under the transmission
diversity model. Numbers beside each node represent the estimated probability that the individual
was positive on admission.
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FIG. 2. ROC curves for estimated transmission trees, based on data simulated under various pa-
rameters. We varied transmission rate (A), the geometric rate parameter governing between-chain
genetic diversity, for which lower values correspond to larger genetic distances (B), and test sensi-
tivity (C). The ROC curves shown are the average for ten datasets simulated for each scenario.

lates and therefore allows discrimination between the set of possible sources. For
higher transmission rates, transmission chains typically become longer, resulting
in the expected genetic distance between isolates approaching the levels expected
for unrelated individuals, adding further between-chain uncertainty. Allowing the
between-chain expected genetic distance to increase (i.e., reducing γG) resulted
in improved accuracy (Figure 2B). If imported strains are always highly distinct,
then it is straightforward to assign an individual to the correct chain, if not the
true source of transmission. Table 1 gives an overview of tree estimation accuracy
under various parameter values.
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TABLE 1
Estimated tree accuracy under various scenarios. Each value presented is the mean area under the
ROC curve (AUC) for estimated trees under the transmission diversity model, based on 20 datasets
simulated under the parameters indicated. Uninformed AUC is based on assigning equal weighting

to all available sources. The more accurate reconstruction is highlighted in bold. ∗Baseline
scenario: p = 0.05, z = 0.8, β = 0.005, γ = 0.2, γG = 0.05, k = 0.8

Scenario Parameters AUC (uninf.) AUC (inf.)

Baseline ∗ 0.67 0.93
Low sensitivity z = 0.6 0.67 0.84
High sensitivity z = 0.9 0.68 0.94
Low transmission β = 0.001 0.62 0.96
High transmission β = 0.008 0.74 0.91
Equal diversity ratio γ = 0.1, γG = 0.1 0.68 0.91
Low diversity ratio γ = 0.3, γG = 0.1 0.68 0.93
High diversity ratio γ = 0.3, γG = 0.005 0.68 0.96
No increasing chain diversity k = 1 0.68 0.93
Strongly increasing chain diversity k = 0.5 0.69 0.90

The importation structure model lends itself to the identification of independent
outbreaks rather than individual transmission routes, since, by definition, it may
discriminate between groups of similar strains, but assumes a fixed distribution of
distances for all samples within a transmission chain. For this reason, tree recon-
struction was often more uncertain than under the transmission diversity model,
particularly for higher transmission rates. However, the identification of isolate
groups was successful for a range of scenarios. In cases with frequent importations,
the importation structure model often performed better than the transmission diver-
sity model, particularly when importations were genetically similar to each other.
Furthermore, this model generated better tree reconstruction from data simulated
under the transmission diversity model than vice-versa. The identification of group
membership depended largely on the ratio of within- and between-group expected
diversity; the smaller this value, the better the performance (Figure 3).

A key determinant of the transmission diversity model performance was the
value of the factor k. The posterior estimate of this parameter was often associated
with much uncertainty, especially in the absence of longer transmission chains.
Differentiating the exact routes of transmission becomes difficult, or even impos-
sible for values of k close to 1, as genetic similarity along a transmission chain
diminishes. Values of k close to zero indicate that a considerable amount of mu-
tation occurs between transmission events, and the genotype within the newly in-
fected individual is very different to that found in the source. We found that tree
reconstruction was less successful when k was low (Table 1), and low values of k

were typically overestimated.
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FIG. 3. Group identification under importation structure model. Data were simulated under a
range of within and between group genetic distance distributions, and we estimated the posterior
probability that the importation structure model placed an infected individual in the correct group
(belonging to the same group as the first importation of that group). Baseline scenario: p = 0.05,
z = 0.8, β = 0.005, c = 0.2.

In most cases, the ROC curve for estimated transmission trees indicated a con-
siderably better performance than the uninformed tree, demonstrating the gain
in information associated with the inclusion of genomic data. However, the tree
reconstruction was relatively poor where diversity was defined to be similar for
related and unrelated isolates, or when diversity could accumulate quickly in a
transmission chain (Table 1). Tree accuracy was relatively poor for lower values
of test sensitivity (Figure 2C), but we nevertheless found that our estimates con-
sistently outperformed the uninformed tree (Table 1). However, even with perfect
sensitivity, some transmission routes were not recovered, due to colonization and
subsequent discharge occurring prior to the next screening time. The degree of un-
certainty surrounding even relatively simple trees is notable, reflecting the genetic
similarity of linked cases.

We tested sensitivity to our choice of prior distributions by varying the rate pa-
rameter of the prior exponential distributions of β and k. We found that neither the
parameter estimates nor the estimated transmission tree were affected considerably
by varying this value between 10−2 and 10−10.

We additionally simulated sequence data under an explicit pathogen evolution-
ary model. Using the R package “seedy” [Worby and Read (2015)], we generated
sequence data on top of transmission trees simulated as before. We found that
transmission trees could be recovered well, offering a considerable improvement
on the uninformed trees (see supplementary material for further details).
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FIG. 4. Colonized patient episodes in the Rosie hospital neonatal ward. Patients are shown as
colonized (black) after their first MRSA positive swab result until the end of their episode. Susceptible
patients are shown in grey. Patient marked with an asterisk (*) carry a nonoutbreak sequence type.

3.2. MRSA outbreak data from Rosie hospital, Cambridge, UK. An outbreak
of MRSA was observed in 2011 in a special care baby unit at the Rosie Hos-
pital, Cambridge, UK, in which a total of 20 newborn infants were found to be
MRSA-positive. We considered a dataset spanning 450 days, including this out-
break, comprising admission and discharge times, as well as MRSA screening re-
sults and times, for all patients admitted during this period. A total of 1108 unique
patients were admitted to the ward in this period and were swabbed regularly for
the presence of MRSA. Figure 4 shows the colonized patient episodes and to-
tal population over the study period. Of the 20 patients with positive swabs, 18
had one positive isolate sequenced, and 15 of these were found to be sequence
type 2371 (ST2371) (patient numbers 1–15). The remaining three sequenced iso-
lates (carried by patients 27–29) were separated from this outbreak type (and
each other) by several thousand SNPs. Two patients (654 and 801) had a posi-
tive swab, but no sequenced isolate. During the outbreak investigation, all HCWs
were screened voluntarily and with consent, one of whom was found to be MRSA
positive. Twenty colonies from this individual were sequenced, revealing carriage
of several ST2371 genotypes, differing by up to 10 SNPs (mean pairwise distance
3.9 SNPs). Full details of sequencing and data collection are described in Harris
et al. (2013), and sequences were uploaded to the European Nucleotide Archive
(www.ebi.ac.uk/ena).

The nonoutbreak sequence types differed by many thousands of SNPs. Fitting
the transmission diversity model to these data using a geometric distribution would
make the relative likelihood of an observed distance of a much smaller magnitude
arising from unrelated transmission chains very low, forcing the model to link all

http://www.ebi.ac.uk/ena
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outbreak strains where possible. This in turn results in an overestimation of the
frequency of transmission events. This suggests that a geometric distribution is
not an adequate approximation of between transmission chain genetic distances
when multiple strain types are present. For this reason, we fitted the transmission
diversity model to a restricted dataset, omitting the non-ST2371 strain types. Al-
ternatively, a multimodal distribution could be chosen to account for distant strain
clusters, although such a model would likely be overparameterized given the avail-
able data. The importation structure model avoids this issue, so we used all avail-
able data in this case. For both models, we assumed that test sensitivity was beta
distributed with mean 0.8 and standard deviation 0.04 a priori, in line with previ-
ous estimates from Worby et al. (2013). We used the sequenced isolates from the
colonized HCW to inform our prior density of within-host diversity, γ . All other
priors were as described in Section 2.4.

We first ran the MCMC algorithm under the transmission diversity model. Pos-
terior mean estimates and credible intervals of model parameters are summarized
in Table 2. We estimated that 1.2% (95% CrI: 0.7%, 1.9%) of patients were pos-
itive on admission. The rate of transmission was low, and we estimated a total
of 4.8 (3, 7) acquisitions on the ward. Three transmission events had a posterior
probability above 0.5, and no transmission was inferred to or from the nonoutbreak
types (Figure 5). Around 26% of colonized individuals were the source of one or
more secondary cases (Figure 6a). Isolates from patient 654 were not sequenced,
therefore we sampled over possible genetic types for this individual. With a high
posterior probability (97%), this patient was involved in a transmission event with
patient 10, although the direction of transmission was uncertain. We estimated the
transmission diversity factor k to be 1.2 (0.7, 1.8), the wide credible interval re-
flecting the paucity of transmission events, most of which formed a transmission
chain of length 1 (Figure 6b). Within-host diversity was estimated to be 3.9 (3.3,
4.6) SNPs, an estimate dominated by the prior density based on the samples from

TABLE 2
Posterior mean estimates and 95% credible intervals for parameters of each model fitted to the

Rosie hospital outbreak data

Transmission diversity Importation structure
Parameter (95% CrI) (95% CrI)

Probability of importation, p 0.012 (0.007, 0.019) 0.017 (0.009, 0.024)
Test sensitivity, z 0.72 (0.65, 0.79) 0.70 (0.64, 0.77)

Transmission rate β × 10−5 89.9 (38.8, 158.2) 80.6 (30.1, 153.7)
Within host/group diversity γ 0.20 (0.18, 0.23) 0.22 (0.19, 0.25)

Between host/group diversity, γG 0.17 (0.18, 0.23) 1.6 (1.4, 1.9) × 10−4

Chain diversity factor, k 1.2 (0.71, 1.82) —
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FIG. 5. Colonized patient episodes in the Rosie hospital neonatal ward. Horizontal bars represent
patient episodes, with ID marked alongside. Grey bars denote susceptibility, while black represents
the period after the patient’s first MRSA positive swab. Arrows denote inferred routes of transmis-
sion, with darker arrows representing higher posterior probabilities, the values of which are given
alongside. Patients carrying nonoutbreak types are shown at the top of the figure.

the HCW. As such, the expected distance from source to recipient was approxi-
mately 3 SNPs. With the nonoutbreak strain types excluded, the expected distance
to unrelated strains was 4.9 (4, 6.1) SNPs. We generated the posterior predictive
distributions for the number of observed importations, acquisitions and overall di-
versity. We found that the true observed values from the dataset fell within the
95% central quantile of the predictive distribution, providing no indication that the
model was a poor fit [Worby et al. (2016)].

FIG. 6. Properties of the transmission network, estimated under the transmission diversity model.
The posterior distribution of secondary infections for each colonized individual (left) and of the
number of connected nodes in each subtree (right).
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The importation structure model placed a high posterior probability on the exis-
tence of four groups, reflecting the four sequence types observed in the study. We
estimated the expected pairwise distance between isolates belonging to the same
group to be 3.7 (3, 4.5) SNPs. Under this model, the probability of importation
was estimated to be slightly higher, while the transmission rate was lower. We es-
timated that patients 1 and 3, who were originally missed by the infection control
team at the hospital, were part of the main outbreak group, in accordance with the
study by Harris et al. (2013).

4. Discussion. The genetic diversity and structured importation models we
have described here allow the combined analysis of genetic and epidemiological
data. We applied these methods to the transmission of MRSA in hospitals, demon-
strating the simultaneous estimation of model parameters and a transmission tree.
More generally, the approaches we have developed can be applied to the analysis
of disease transmission in a community where high-frequency sampling of se-
quence data is available. These methods offer flexibility not available in previous
approaches, as they allow multiple introductions of the pathogen into the popula-
tion, incorporation of within-host genetic diversity, unobserved colonization times,
and the provision of estimates of uncertainty for each potential transmission route.
While we have used whole genome sequence data, this approach may also be used
with lower resolution genetic data, provided a distance metric between isolates
can be defined. A major advantage of our framework over existing methods is the
ability to simulate forward from our models. This allows one to perform predictive
analyses, as well as model evaluation procedures.

A considerable degree of uncertainty was associated with the resulting esti-
mated transmission trees, even for small outbreaks, despite the densely sampled
genomic data and well-defined periods of potential contact. As has been previ-
ously demonstrated, individual transmission routes are generally unlikely to be
identified with high confidence using genetic distance data alone [Worby, Lip-
sitch and Hanage (2014)]. This reflects the high genetic similarity of individuals
in the same transmission chain, and we believe that quantification of uncertainty
is of much importance—methods which provide an optimal tree with no mea-
sure of uncertainty may be misleading. While we have demonstrated the gen-
eral improvement in tree accuracy associated with the availability of genomic
data, in most cases, much uncertainty is likely to remain regarding transmission
routes.

Some previous studies aiming to reconstruct transmission trees using densely-
sampled genetic data have used a phylogenetic approach, implicitly assuming that
a transmission tree will map closely to the phylogenetic tree [Bryant et al. (2013),
Cottam et al. (2008), Gardy et al. (2011)]. However, this assumption may not hold
[Pybus and Rambaut (2009), Romero-Severson et al. (2014)]. A fundamental lim-
itation of phylogeny-based approaches is that the relationship between the trans-
mission and phylogenetic trees depends on the within-host evolutionary dynamics
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which, in the absence of dense within-host sampling, are not identifiable. By si-
multaneously sampling over the phylogenetic tree and the transmission tree, one
can account for unknown coalescent times and dependencies between genetic dis-
tances [Ypma, van Ballegooijen and Wallinga (2013)]. While this approach offers a
more realistic model for the emergence of diversity, it also requires a reliable model
of within-host pathogen population dynamics. Furthermore, this method requires
sampling over the space of phylogenetic trees (and therefore unobserved sequence
data), resulting in a considerably more computationally intensive approach than
our proposed framework. Even with such a model, the method cannot differentiate
between importations and acquisitions, crucial when considering an outbreak in
a hospital setting. Data on within-host dynamics are currently scarce, and these
dynamics may vary widely between individuals. As such, robust specification of
such models is challenging.

Our analysis has some limitations. We have assumed that the source of transmis-
sion for each patient must come (indirectly, via HCW) from another patient present
on the ward. As Harris et al. (2013) suggested, there is a strong possibility of ex-
ternal sources of transmission in this setting. This would mean that the patient-to-
patient transmission rate may be overestimated in our model. Our approach would
perform best when all potential contacts are included in the analysis. Additionally,
we have used a transmission model that does not allow for heterogeneous rates of
transmissibility. We believe that this model is adequate in this setting, and did not
affect our primary goal of estimating the transmission tree. We have assumed that
clearance of carriage and reinfection are not possible; while it appears unlikely that
such events are common in this dataset, incorporating mechanisms for these could
be important in other settings and over longer time periods.

Our estimates from the Rosie hospital data suggested that within- and between-
host diversity were similar, with the former slightly higher than the latter, sug-
gested by the estimate of k > 1. Our estimates of within-host diversity were driven
by the HCW, since multiple isolates were not collected from patients. If the HCW
was colonized for a long period of time, a higher level of within-host diversity
would be expected than within newly colonized infant patients, potentially leading
to estimates of k > 1. We believe that repeated sampling of each patient would lead
to an improved estimate of within-host patient diversity, and that as an estimate of
k > 1 would be unlikely. We repeated our analysis with k restricted to the interval
[0,1] and found that both parameter estimates and the inferred transmission tree
were largely unaffected (supplementary material, Table 2).

We chose simple geometric distributions to represent the genetic diversity both
within and between individuals, assuming the probability of each observed se-
quence was time-homogeneous. We additionally experimented with equivalent
Poisson distributions, however, results for the ICU data were very similar using
both distributions, although this may not hold for larger datasets with longer trans-
mission chains. While little evidence exists on observed genetic diversity during
an epidemic, pairwise genetic distances of the same strain type collected during a
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tuberculosis outbreak appear to approximate a geometric distribution [Bryant et al.
(2013)], and with a known time to coalescence t and mutation rate μ, the genetic
distance should follow a Pois(2μt) distribution. With an unknown coalescent time
and constant pathogen population size, the genetic distance between contempo-
raneously sampled genomes should follow a Geometric distribution [Watterson
(1975)].

As discussed in Section 2.3.1, the true distribution between independent trans-
mission chains may be multimodal and poorly approximated by a geometric distri-
bution. For this reason, we excluded nonoutbreak sequence types manually before
running the transmission diversity model. Our model could be extended in the fu-
ture to remove this requirement, as for large datasets, and scenarios with concurrent
outbreaks belonging to different strain types, this approach would be inappropri-
ate. If local sampling data were available from the community or other regional
hospital admissions, we could potentially construct an empirical distribution for
the pairwise genetic distances expected between unlinked cases. As yet, such data
are typically unavailable, though collection of such data may be feasible in the
future.

We have assumed in our analysis that genetic distances are observed without
error. In common with all existing tree estimation methods, we assumed that errors
arising from sequencing and/or alignment were negligible. In the supplementary
material we explored the impact of introducing observation error into the genetic
distance matrix, finding that network reconstruction remained largely unaffected
by such errors [Worby et al. (2016)].

There are several potential alterations to our model which could be considered
and readily incorporated into our framework. The transmission chain diversity
model allows the expected genetic distance to increase with number of transmis-
sion events and could be reformulated to allow distance to increase linearly or
via an alternative relationship. Time between samples could instead be used as
the factor by which diversity increases, however, this relationship is complex and
only fully understood by accounting for within-host dynamics [Worby, Lipsitch
and Hanage (2014)]. Furthermore, since the time between samples from transmis-
sion pairs does not vary greatly in this setting, we do not believe it would affect
the results significantly. However, in cases where the length of stay (or length
of carriage in a nonhospital setting) is long, which would allow times between
sample pairs to vary considerably, then such an amendment should be consid-
ered.

Furthermore, in creating this model framework, we have assumed that genetic
distances are drawn independently, which is not the case in reality. Although in
principle this assumption can be relaxed, this would require considerable addi-
tional computational complexity. This may be considered in future studies.

Identifying imported cases is challenging, especially when cases are admitted
with highly similar strains. In such a setting, our models can exhibit significantly
different results—under the importation structure model, an importation of the
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same group is more likely than an acquisition soon after admission from another
individual on the ward, while under the transmission diversity model, the reverse
is true. As such, when strains circulating in the community are very similar to
those found in the hospital, the importation structure model will generally perform
better, allowing such strains to be clustered importations rather than rapid acquisi-
tions. An intensive care unit admitting patients from elsewhere in the same hospital
is an example of a setting where similar strains may be repeatedly imported to the
ward. With no prior knowledge of external diversity, it is hard to determine which
model is more suitable for identifying importations. However, if both models are
run, significant differences between estimated transmission trees suggest that ex-
ternal diversity is similar to that found within the ward. Further data collection
would be required to confirm this. The classification of cases as importations or
acquisitions is key to the evaluation of infection control procedures, which for
healthcare facilities in particular is of great importance. The framework described
here can be used to provide evidence towards importation or acquisition in each
case using genetic and surveillance data.
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SUPPLEMENTARY MATERIAL

Appendix: Transmission tree sampling approach (DOI: 10.1214/15-
AOAS898SUPPA; .pdf). Full description of the tree sampling approach, as well as
supplementary figures.

Code: Software (DOI: 10.1214/15-AOAS898SUPPSUPPB; .zip). R package
“bitrugs” (Bayesian Inference of Transmission Routes Using Genome Sequences),
with implementation of data simulation and MCMC algorithm.
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