116 research outputs found

    Neural regulation of cardiovascular response to exercise: role of central command and peripheral afferents

    Get PDF
    During dynamic exercise, mechanisms controlling the cardiovascular apparatus operate to provide adequate oxygen to fulfill metabolic demand of exercising muscles and to guarantee metabolic end-products washout. Moreover, arterial blood pressure is regulated to maintain adequate perfusion of the vital organs without excessive pressure variations. The autonomic nervous system adjustments are characterized by a parasympathetic withdrawal and a sympathetic activation. In this review, we briefly summarize neural reflexes operating during dynamic exercise. The main focus of the present review will be on the central command, the arterial baroreflex and chemoreflex, and the exercise pressure reflex. The regulation and integration of these reflexes operating during dynamic exercise and their possible role in the pathophysiology of some cardiovascular diseases are also discusse

    Radiation field characteristics and irradiation techniques for gamma irradiation facilities using spent fuel elements from the reactor HIFAR.

    Get PDF
    Experimental and surface gamma irradiations of various small volume of bulk materials can be carried out at Lucas Heights by using an array of spent fuel elements from the reactor HIFAR in an irradiation pond. Details of the gamma radiation fields available are given and the irradiation techniques are described. These include experimental irradiations at low, ambient, and above-ambient temperatures. Geometrical factors which affect the dose rate are taken into account to ensure that the materials receive the specified dose

    The infiltration-centrifugation technique for extraction of apoplastic fluid from plant leaves using Phaseolus vulgaris as an example

    Get PDF
    This is the final version of the article. Available from JoVE via the DOI in this record.The apoplast is a distinct extracellular compartment in plant tissues that lies outside the plasma membrane and includes the cell wall. The apoplastic compartment of plant leaves is the site of several important biological processes, including cell wall formation, cellular nutrient and water uptake and export, plant-endophyte interactions and defence responses to pathogens. The infiltration-centrifugation method is well established as a robust technique for the analysis of the soluble apoplast composition of various plant species. The fluid obtained by this method is commonly known as apoplast washing fluid (AWF). The following protocol describes an optimized vacuum infiltration and centrifugation method for AWF extraction from Phaseolus vulgaris (French bean) cv. Tendergreen leaves. The limitations of this method and the optimization of the protocol for other plant species are discussed. Recovered AWF can be used in a wide range of downstream experiments that seek to characterize the composition of the apoplast and how it varies in response to plant species and genotype, plant development and environmental conditions, or to determine how microorganisms grow in apoplast fluid and respond to changes in its composition.This work was supported by grants BB/J016012/1 and BB/E007872/1 from the UK Biotechnology and Biological Sciences Research Council (BBSRC) to Gail Preston

    An apoplastic fluid extraction method for the characterization of grapevine leaves proteome and metabolome from a single sample

    Get PDF
    The analysis of complex biological systems keeps challenging researchers. The main goal of systems biology is to decipher interactions within cells, by integrating datasets from large scale analytical approaches including transcriptomics, proteomics and metabolomics andmore specialized ‘OMICS’ such as epigenomics and lipidomics. Studying different cellular compartments allows a broader understanding of cell dynamics. Plant apoplast, the cellular compartment external to the plasma membrane including the cell wall, is particularly demanding to analyze. Despite our knowledge on apoplast involvement on several processes from cell growth to stress responses, its dynamics is still poorly known due to the lack of efficient extraction processes adequate to each plant system.Analyzing woody plants such as grapevine raises even more challenges. Grapevine is among the most important fruit crops worldwide and awider characterization of its apoplast is essential for a deeper understanding of its physiology and cellular mechanisms. Here, we describe, for the first time, a vacuum-infiltrationcentrifugationmethod that allows a simultaneous extraction of grapevine apoplastic proteins and metabolites from leaves on a single sample, compatible with high-throughput mass spectrometry analyses. The extracted apoplast from two grapevine cultivars, Vitis vinifera cv ‘Trincadeira’ and ‘Regent’, was directly used for proteomics and metabolomics analysis. The proteome was analyzed by nanoLC-MS/MS and more than 700 common proteinswere identified, with highly diverse biological functions. The metabolome profile through FT-ICR-MS allowed the identification of 514 unique putative compounds revealing a broad spectrum of molecular classesinfo:eu-repo/semantics/publishedVersio

    Meta-analysis of genome-wide association studies from the CHARGE consortium identifies common variants associated with carotid intima media thickness and plaque

    Get PDF
    Carotid intima media thickness (cIMT) and plaque determined by ultrasonography are established measures of subclinical atherosclerosis that each predicts future cardiovascular disease events. We conducted a meta-analysis of genome-wide association data in 31,211 participants of European ancestry from nine large studies in the setting of the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) Consortium. We then sought additional evidence to support our findings among 11,273 individuals using data from seven additional studies. In the combined meta-analysis, we identified three genomic regions associated with common carotid intima media thickness and two different regions associated with the presence of carotid plaque (P < 5 × 10 -8). The associated SNPs mapped in or near genes related to cellular signaling, lipid metabolism and blood pressure homeostasis, and two of the regions were associated with coronary artery disease (P < 0.006) in the Coronary Artery Disease Genome-Wide Replication and Meta-Analysis (CARDIoGRAM) consortium. Our findings may provide new insight into pathways leading to subclinical atherosclerosis and subsequent cardiovascular events

    Genotype at the P554L Variant of the Hexose-6 Phosphate Dehydrogenase Gene Is Associated with Carotid Intima-Medial Thickness

    Get PDF
    Objective: The combined thickness of the intima and media of the carotid artery (carotid intima-medial thickness, CIMT) is associated with cardiovascular disease and stroke. Previous studies indicate that carotid intima-medial thickness is a significantly heritable phenotype, but the responsible genes are largely unknown. Hexose-6 phosphate dehydrogenase (H6PDH) is a microsomal enzyme whose activity regulates corticosteroid metabolism in the liver and adipose tissue; variability in measures of corticosteroid metabolism within the normal range have been associated with risk factors for cardiovascular disease. We performed a genetic association study in 854 members of 224 families to assess the relationship between polymorphisms in the gene coding for hexose-6 phosphate dehydrogenase (H6PD) and carotid intima-medial thickness. Methods: Families were ascertained via a hypertensive proband. CIMT was measured using B-mode ultrasound. Single nucleotide polymorphisms (SNPs) tagging common variation in the H6PD gene were genotyped. Association was assessed following adjustment for significant covariates including "classical" cardiovascular risk factors. Functional studies to determine the effect of particular SNPs on H6PDH were performed. Results: There was evidence of association between the single nucleotide polymorphism rs17368528 in exon five of the H6PD gene, which encodes an amino-acid change from proline to leucine in the H6PDH protein, and mean carotid intima-medial thickness (p = 0.00065). Genotype was associated with a 5% (or 0.04 mm) higher mean carotid intima-medial thickness measurement per allele, and determined 2% of the population variability in the phenotype. Conclusions: Our results suggest a novel role for the H6PD gene in atherosclerosis susceptibility

    The Dynamics of Incomplete Lineage Sorting across the Ancient Adaptive Radiation of Neoavian Birds

    Get PDF
    The diversification of neoavian birds is one of the most rapid adaptive radiations of extant organisms. Recent whole-genome sequence analyses have much improved the resolution of the neoavian radiation and suggest concurrence with the Cretaceous-Paleogene (K-Pg) boundary, yet the causes of the remaining genome-level irresolvabilities appear unclear. Here we show that genome-level analyses of 2,118 retrotransposon presence/absence markers converge at a largely consistent Neoaves phylogeny and detect a highly differential temporal prevalence of incomplete lineage sorting (ILS), i.e., the persistence of ancestral genetic variation as polymorphisms during speciation events. We found that ILS-derived incongruences are spread over the genome and involve 35% and 34% of the analyzed loci on the autosomes and the Z chromosome, respectively. Surprisingly, Neoaves diversification comprises three adaptive radiations, an initial near-K-Pg super-radiation with highly discordant phylogenetic signals from near-simultaneous speciation events, followed by two post-K-Pg radiations of core landbirds and core waterbirds with much less pronounced ILS. We provide evidence that, given the extreme level of up to 100% ILS per branch in super-radiations, particularly rapid speciation events may neither resemble a fully bifurcating tree nor are they resolvable as such. As a consequence, their complex demographic history is more accurately represented as local networks within a species tree
    • 

    corecore