367 research outputs found

    Toward an Understanding of SEI Formation and Lithium Plating on Copper in Anode-Free Batteries.

    Get PDF
    Funder: Blavatnik Family Foundation"Anode-free" batteries present a significant advantage due to their substantially higher energy density and ease of assembly in a dry air atmosphere. However, issues involving lithium dendrite growth and low cycling Coulombic efficiencies during operation remain to be solved. Solid electrolyte interphase (SEI) formation on Cu and its effect on Li plating are studied here to understand the interplay between the Cu current collector surface chemistry and plated Li morphology. A native interphase layer (N-SEI) on the Cu current collector was observed with solid-state nuclear magnetic resonance spectroscopy (ssNMR) and electrochemical impedance spectroscopy (EIS). Cyclic voltammetry (CV) and time-of-flight secondary ion mass spectrometry (ToF-SIMS) studies showed that the nature of the N-SEI is affected by the copper interface composition. An X-ray photoelectron spectroscopy (XPS) study identified a relationship between the applied voltage and SEI composition. In addition to the typical SEI components, the SEI contains copper oxides (Cu x O) and their reduction reaction products. Parasitic electrochemical reactions were observed via in situ NMR measurements of Li plating efficiency. Scanning electron microscopy (SEM) studies revealed a correlation between the morphology of the plated Li and the SEI homogeneity, current density, and rest time in the electrolyte before plating. Via ToF-SIMS, we found that the preferential plating of Li on Cu is governed by the distribution of ionically conducting rather than electronic conducting compounds. The results together suggest strategies for mitigating dendrite formation by current collector pretreatment and controlled SEI formation during the first battery charge

    NMR-Enhanced Crystallography Aids Open Metal–Organic Framework Discovery Using Solvent-Free Accelerated Aging

    Get PDF
    We demonstrate the combined use of NMR-enhanced crystallography and solvent-free synthesis by accelerated aging (AA), for the discovery and structural characterization of a novel cadmium-based open metal–organic framework (MOF) belonging to the class of zeolitic imidazolate frameworks (ZIFs). Although solid-state NMR spectroscopy has been used to assist in structural characterization of crystalline solids by powder X-ray diffraction (PXRD), typically through quantification of the contents of the asymmetric unit, this work highlights how it can take a more active role in guiding structure determination, by elucidating the coordination environment of the metal node in a novel MOFs. Exploration of AA reactions of cadmium oxide (CdO) and 2-methylimidazole (HMeIm) enabled the synthesis of not only the previously reported yqt1-topology framework but also a new material (1) exhibiting a Cd/MeIm ratio of 1:3, contrasting the 1:2 ratio expected for a ZIF. Structural characterization of 1 was enabled by using 111Cd solid-state nuclear magnetic resonance (SSNMR) to provide information on the coordination environment of the cadmium node. Specifically, 111Cd SSNMR experiments were conducted on a series of model compounds to correlate the cadmium coordination environment to the observed isotropic chemical shift, δiso(111Cd), followed by multinuclear SSNMR experiments on 1 to determine the nature of the metal coordination environment and the number of distinct chemical sites. This information was used in refinement of the molecular level structure from the available PXRD data, a technique termed NMR-enhanced crystallography, revealing that 1 is an open diamondoid (dia) topology Cd(MeIm)2 framework based on Cd2+ ions tetrahedrally coordinated with MeIm– ligands and additional HMeIm guest molecules within the framework pores. Although AA was initially devised as a clean, mild route for making MOFs, these results provide a proof-of-principle of how, by combining it with SSNMR spectroscopy as a means to overcome limitations of PXRD structure determination, it can be used to screen for new solid phases in the absence of solvents, high temperatures, or mechanical impact that are inherent to other thermally-, solution-, or mechanochemically-based techniques

    Research data supporting the publication "Under Pressure: Offering Fundamental Insight into Structural Changes on Ball Milling Battery Materials"

    Get PDF
    Data depository includes the following: Powder X-ray diffraction (PXRD) of the ball-milled Li2MoO4 (at 40Hz and 50Hz, with varying ball size of 7 and 10 mm). PXRD of H-Nb2O5 ball-milled at 40 Hz and 50 Hz (7 mm ball) Electrochemical data of Li2MoO4 and Li2MnO3 (ball-milled samples). TEM of Li2MoO4 and the ball-milled equivalent. Li and Mo NMR of Li2MoO4 and the ball-milled equivalent

    Onset Potential for Electrolyte Oxidation and Ni-Rich Cathode Degradation in Lithium-Ion Batteries

    Get PDF
    High-capacity Ni-rich layered metal oxide cathodes are highly desirable to increase the energy density of lithium-ion batteries. However, these materials suffer from poor cycling performance, which is exacerbated by increased cell voltage. We demonstrate here the detrimental effect of ethylene carbonate (EC), a core component in conventional electrolytes, when NMC811 (LiNi0.8Mn0.1Co0.1O2) is charged above 4.4 V vs Li/Li+-the onset potential for lattice oxygen release. Oxygen loss is enhanced by EC-containing electrolytes-compared to EC-free-and correlates with more electrolyte oxidation/breakdown and cathode surface degradation, which increase concurrently above 4.4 V. In contrast, NMC111 (LiNi0.33Mn0.33Co0.33O2), which does not release oxygen up to 4.6 V, shows a similar extent of degradation irrespective of the electrolyte. This work highlights the incompatibility between conventional EC-based electrolytes and Ni-rich cathodes (more generally, cathodes that release lattice oxygen such as Li-/Mn-rich and disordered rocksalt cathodes) and motivates further work on wider classes of electrolytes and additives

    Elemental spatial and temporal association formation in left temporal lobe epilepsy

    Get PDF
    The mesial temporal lobe (MTL) is typically understood as a memory structure in clinical settings, with the sine qua non of MTL damage in epilepsy being memory impairment. Recent models, however, understand memory as one of a number of higher cognitive functions that recruit the MTL through their reliance on more fundamental processes, such as “self-projection” or “association formation”. We examined how damage to the left MTL influences these fundamental processes through the encoding of elemental spatial and temporal associations. We used a novel fMRI task to image the encoding of simple visual stimuli, either rich or impoverished, in spatial or spatial plus temporal information. Participants included 14 typical adults (36.4 years, sd. 10.5 years) and 14 patients with left mesial temporal lobe damage as evidenced by a clinical diagnosis of left temporal lobe epilepsy (TLE) and left MTL impairment on imaging (34.3 years, sd. 6.6 years). In-scanner behavioral performance was equivalent across groups. In the typical group whole-brain analysis revealed highly significant bilateral parahippocampal activation (right > left) during spatial associative processing and left hippocampal/parahippocampal deactivation in joint spatial-temporal associative processing. In the left TLE group identical analyses indicated patients used MTL structures contralateral to the seizure focus differently and relied on extra-MTL regions to a greater extent. These results are consistent with the notion that epileptogenic MTL damage is followed by reorganization of networks underlying elemental associative processes. In addition, they provide further evidence that task-related fMRI deactivation can meaningfully index brain function. The implications of these findings for clinical and cognitive neuropsychological models of MTL function in TLE are discussed

    Structural and dynamic disorder, not ionic trapping, controls charge transport in highly doped conducting polymers

    Get PDF
    Doped organic semiconductors are critical to emerging device applications, including thermoelectrics, bioelectronics, and neuromorphic computing devices. It is commonly assumed that low conductivities in these materials result primarily from charge trapping by the Coulomb potentials of the dopant counter-ions. Here, we present a combined experimental and theoretical study rebutting this belief. Using a newly developed doping technique, we find the conductivity of several classes of high-mobility conjugated polymers to be strongly correlated with paracrystalline disorder but poorly correlated with ionic size, suggesting that Coulomb traps do not limit transport. A general model for interacting electrons in highly doped polymers is proposed and carefully parameterized against atomistic calculations, enabling the calculation of electrical conductivity within the framework of transient localisation theory. Theoretical calculations are in excellent agreement with experimental data, providing insights into the disordered-limited nature of charge transport and suggesting new strategies to further improve conductivities

    Evidence for Sequential and Increasing Activation of Replication Origins along Replication Timing Gradients in the Human Genome

    Get PDF
    Genome-wide replication timing studies have suggested that mammalian chromosomes consist of megabase-scale domains of coordinated origin firing separated by large originless transition regions. Here, we report a quantitative genome-wide analysis of DNA replication kinetics in several human cell types that contradicts this view. DNA combing in HeLa cells sorted into four temporal compartments of S phase shows that replication origins are spaced at 40 kb intervals and fire as small clusters whose synchrony increases during S phase and that replication fork velocity (mean 0.7 kb/min, maximum 2.0 kb/min) remains constant and narrowly distributed through S phase. However, multi-scale analysis of a genome-wide replication timing profile shows a broad distribution of replication timing gradients with practically no regions larger than 100 kb replicating at less than 2 kb/min. Therefore, HeLa cells lack large regions of unidirectional fork progression. Temporal transition regions are replicated by sequential activation of origins at a rate that increases during S phase and replication timing gradients are set by the delay and the spacing between successive origin firings rather than by the velocity of single forks. Activation of internal origins in a specific temporal transition region is directly demonstrated by DNA combing of the IGH locus in HeLa cells. Analysis of published origin maps in HeLa cells and published replication timing and DNA combing data in several other cell types corroborate these findings, with the interesting exception of embryonic stem cells where regions of unidirectional fork progression seem more abundant. These results can be explained if origins fire independently of each other but under the control of long-range chromatin structure, or if replication forks progressing from early origins stimulate initiation in nearby unreplicated DNA. These findings shed a new light on the replication timing program of mammalian genomes and provide a general model for their replication kinetics
    • …
    corecore