42 research outputs found

    Active commuting to school: How far is too far?

    Get PDF
    Walking and cycling to school provide a convenient opportunity to incorporate physical activity into an adolescent's daily routine. School proximity to residential homes has been identified as an important determinant of active commuting among children. The purpose of this study is to identify if distance is a barrier to active commuting among adolescents, and if there is a criterion distance above which adolescents choose not to walk or cycle. Data was collected in 2003-05 from a cross-sectional cohort of 15-17 yr old adolescents in 61 post primary schools in Ireland. Participants self-reported distance, mode of transport to school and barriers to active commuting. Trained researchers took physical measurements of height and weight. The relation between mode of transport, gender and population density was examined. Distance was entered into a bivariate logistic regression model to predict mode choice, controlling for gender, population density socio-economic status and school clusters. Of the 4013 adolescents who participated (48.1% female, mean age 16.02 ± 0.661), one third walked or cycled to school. A higher proportion of males than females commuted actively (41.0 vs. 33.8%, χ2 (1) = 22.21, p < 0.001, r = -0.074). Adolescents living in more densely populated areas had greater odds of active commuting than those in the most sparsely populated areas (χ2 (df = 3) = 839.64, p < 0.001). In each density category, active commuters travelled shorter distances to school. After controlling for gender and population density, a 1-mile increase in distance decreased the odds of active commuting by 71% (χ2 (df = 1) = 2591.86, p < 0.001). The majority of walkers lived within 1.5 miles and cyclists within 2.5 miles. Over 90% of adolescents who perceived distance as a barrier to active commuting lived further than 2.5 miles from school. Distance is an important perceived barrier to active commuting and a predictor of mode choice among adolescents. Distances within 2.5 miles are achievable for adolescent walkers and cyclists. Alternative strategies for increasing physical activity are required for individuals living outside of this criterion

    Acute Exercise Remodels Promoter Methylation in Human Skeletal Muscle

    Get PDF
    SummaryDNA methylation is a covalent biochemical modification controlling chromatin structure and gene expression. Exercise elicits gene expression changes that trigger structural and metabolic adaptations in skeletal muscle. We determined whether DNA methylation plays a role in exercise-induced gene expression. Whole genome methylation was decreased in skeletal muscle biopsies obtained from healthy sedentary men and women after acute exercise. Exercise induced a dose-dependent expression of PGC-1α, PDK4, and PPAR-δ, together with a marked hypomethylation on each respective promoter. Similarly, promoter methylation of PGC-1α, PDK4, and PPAR-δ was markedly decreased in mouse soleus muscles 45 min after ex vivo contraction. In L6 myotubes, caffeine exposure induced gene hypomethylation in parallel with an increase in the respective mRNA content. Collectively, our results provide evidence that acute gene activation is associated with a dynamic change in DNA methylation in skeletal muscle and suggest that DNA hypomethylation is an early event in contraction-induced gene activation

    Early-onset and classical forms of type 2 diabetes show impaired expression of genes involved in muscle branched-chain amino acids metabolism

    Get PDF
    Abstract The molecular mechanisms responsible for the pathophysiological traits of type 2 diabetes are incompletely understood. Here we have performed transcriptomic analysis in skeletal muscle, and plasma metabolomics from subjects with classical and early-onset forms of type 2 diabetes (T2D). Focused studies were also performed in tissues from ob/ob and db/db mice. We document that T2D, both early and late onset, are characterized by reduced muscle expression of genes involved in branched-chain amino acids (BCAA) metabolism. Weighted Co-expression Networks Analysis provided support to idea that the BCAA genes are relevant in the pathophysiology of type 2 diabetes, and that mitochondrial BCAA management is impaired in skeletal muscle from T2D patients. In diabetic mice model we detected alterations in skeletal muscle proteins involved in BCAA metabolism but not in obese mice. Metabolomic analysis revealed increased levels of branched-chain keto acids (BCKA), and BCAA in plasma of T2D patients, which may result from the disruption of muscle BCAA management. Our data support the view that inhibition of genes involved in BCAA handling in skeletal muscle takes place as part of the pathophysiology of type 2 diabetes, and this occurs both in early-onset and in classical type 2 diabetes

    Early-onset and classical forms of type 2 diabetes show impaired expression of genes involved in muscle branched-chain amino acids metabolism

    Get PDF
    The molecular mechanisms responsible for the pathophysiological traits of type 2 diabetes are incompletely understood. Here we have performed transcriptomic analysis in skeletal muscle, and plasma metabolomics from subjects with classical and early-onset forms of type 2 diabetes (T2D). Focused studies were also performed in tissues from ob/ob and db/db mice. We document that T2D, both early and late onset, are characterized by reduced muscle expression of genes involved in branched-chain amino acids (BCAA) metabolism. Weighted Co-expression Networks Analysis provided support to idea that the BCAA genes are relevant in the pathophysiology of type 2 diabetes, and that mitochondrial BCAA management is impaired in skeletal muscle from T2D patients. In diabetic mice model we detected alterations in skeletal muscle proteins involved in BCAA metabolism but not in obese mice. Metabolomic analysis revealed increased levels of branched-chain keto acids (BCKA), and BCAA in plasma of T2D patients, which may result from the disruption of muscle BCAA management. Our data support the view that inhibition of genes involved in BCAA handling in skeletal muscle takes place as part of the pathophysiology of type 2 diabetes, and this occurs both in early-onset and in classical type 2 diabetes

    Associations between maternal physical activity in early and late pregnancy and offspring birth size: remote federated individual level meta-analysis from eight cohort studies.

    Get PDF
    OBJECTIVE: Evidence on the impact of leisure time physical activity (LTPA) in pregnancy on birth size is inconsistent. We aimed to examine the association between LTPA during early and late pregnancy and newborn anthropometric outcomes. DESIGN: Individual level meta-analysis, which reduces heterogeneity across studies. SETTING: A consortium of eight population-based studies (seven European and one US) comprising 72,694 participants. METHODS: Generalised linear models with consistent inclusion of confounders (gestational age, sex, parity, maternal age, education, ethnicity, BMI, smoking and alcohol intake) were used to test associations between self-reported LTPA at either early (8-18 weeks gestation) or late pregnancy (30+ weeks) and the outcomes. Results were pooled using random effects meta-analyses. MAIN OUTCOME MEASURES: Birth weight, Large-for-gestational age (LGA), macrosomia, small-for-gestational age (SGA), %body fat and ponderal index at birth. RESULTS: Late, but not early, gestation maternal moderate-to-vigorous physical activity (MVPA), vigorous activity and LTPA energy expenditure were modestly inversely associated with BW, LGA, macrosomia and ponderal index, without heterogeneity (all: I-square=0%). For each extra hour/week of MVPA, RR for LGA and macrosomia were 0.97 (95% CI: 0.96, 0.98) and 0.96 (95%CI: 0.94, 0.98) respectively. Associations were only modestly reduced after additional adjustments for maternal BMI and gestational diabetes. No measure of LTPA was associated with risk for SGA. CONCLUSIONS: Physical activity in late, but not early, pregnancy is consistently associated with modestly lower risk of LGA and macrosomia, but not SGA. This article is protected by copyright. All rights reserved.Includes MRC, Wellcome Trust and NIHR

    Heterogeneity of Associations between Total and Types of Fish Intake and the Incidence of Type 2 Diabetes: Federated Meta-Analysis of 28 Prospective Studies Including 956,122 Participants.

    Get PDF
    The association between fish consumption and new-onset type 2 diabetes is inconsistent and differs according to geographical location. We examined the association between the total and types of fish consumption and type 2 diabetes using individual participant data from 28 prospective cohort studies from the Americas (6), Europe (15), the Western Pacific (6), and the Eastern Mediterranean (1) comprising 956,122 participants and 48,084 cases of incident type 2 diabetes. Incidence rate ratios (IRRs) for associations of total fish, shellfish, fatty, lean, fried, freshwater, and saltwater fish intake and type 2 diabetes were derived for each study, adjusting for a consistent set of confounders and combined across studies using random-effects meta-analysis. We stratified all analyses by sex due to observed interaction (p = 0.002) on the association between fish and type 2 diabetes. In women, for each 100 g/week higher intake the IRRs (95% CIs) of type 2 diabetes were 1.02 (1.01-1.03, I2 = 61%) for total fish, 1.04 (1.01-1.07, I2 = 46%) for fatty fish, and 1.02 (1.00-1.04, I2 = 33%) for lean fish. In men, all associations were null. In women, we observed variation by geographical location: IRRs for total fish were 1.03 (1.02-1.04, I2 = 0%) in the Americas and null in other regions. In conclusion, we found evidence of a neutral association between total fish intake and type 2 diabetes in men, but there was a modest positive association among women with heterogeneity across studies, which was partly explained by geographical location and types of fish intake. Future research should investigate the role of cooking methods, accompanying foods and environmental pollutants, but meanwhile, existing dietary regional, national, or international guidelines should continue to guide fish consumption within overall healthy dietary patterns

    Mitochondrial physiology

    Get PDF
    As the knowledge base and importance of mitochondrial physiology to evolution, health and disease expands, the necessity for harmonizing the terminology concerning mitochondrial respiratory states and rates has become increasingly apparent. The chemiosmotic theory establishes the mechanism of energy transformation and coupling in oxidative phosphorylation. The unifying concept of the protonmotive force provides the framework for developing a consistent theoretical foundation of mitochondrial physiology and bioenergetics. We follow the latest SI guidelines and those of the International Union of Pure and Applied Chemistry (IUPAC) on terminology in physical chemistry, extended by considerations of open systems and thermodynamics of irreversible processes. The concept-driven constructive terminology incorporates the meaning of each quantity and aligns concepts and symbols with the nomenclature of classical bioenergetics. We endeavour to provide a balanced view of mitochondrial respiratory control and a critical discussion on reporting data of mitochondrial respiration in terms of metabolic flows and fluxes. Uniform standards for evaluation of respiratory states and rates will ultimately contribute to reproducibility between laboratories and thus support the development of data repositories of mitochondrial respiratory function in species, tissues, and cells. Clarity of concept and consistency of nomenclature facilitate effective transdisciplinary communication, education, and ultimately further discovery
    corecore