61 research outputs found
ANTARES search for point-sources of neutrinos using astrophysical catalogs: a likelihood stacking analysis
A search for astrophysical point-like neutrino sources using the data
collected by the ANTARES detector between January 29, 2007 and December 31,
2017 is presented. A likelihood stacking method is used to assess the
significance of an excess of muon neutrinos inducing track-like events in
correlation with the location of a list of possible sources. Different sets of
objects are tested in the analysis: a) a sub-sample of the \textit{Fermi} 3LAC
catalog of blazars, b) a jet-obscured AGN population, c) a sample of soft
gamma-ray selected radio galaxies, d) a star-forming galaxy catalog , and e) a
public sample of 56 very-high-energy track events from the IceCube experiment.
None of the tested sources shows a significant association with the sample of
neutrinos detected by ANTARES. The smallest p-value is obtained for the radio
galaxies catalog with an equal weights hypothesis, with a pre-trial p-value
equivalent to a excess, equivalent to
post-trial.
In addition, the results of a dedicated analysis for the blazar MG3
J225517+2409 are also reported: this source is found to be the most significant
within the \textit{Fermi} 3LAC sample, with 5 ANTARES events located at less
than one degree from the source. This blazar showed evidence of flaring
activity in \textit{Fermi} data, in space-time coincidence with a high-energy
track detected by IceCube. An \emph{a posteriori} significance of for the combination of ANTARES and IceCube data is reported
Observation of the cosmic ray shadow of the Sun with the ANTARES neutrino telescope
[EN] The ANTARES detector is an undersea neutrino telescope in the Mediterranean Sea. The search for pointlike neutrino sources is one of the main goals of the ANTARES telescope, requiring a reliable method to evaluate the detector angular resolution and pointing accuracy. This work describes the study of the Sun ¿shadow¿ effect with the ANTARES detector. The shadow is the deficit in the atmospheric muon flux in the direction of the Sun caused by the absorption of the primary cosmic rays. This analysis is based on the data collected between 2008 and 2017 by the ANTARES telescope. The observed statistical significance of the Sun shadow detection is 3.7¿, with an estimated angular resolution of 0.59° +- 0.10°for downward-going muons. The pointing accuracy is found to be consistent with the expectations and no evidence of systematic pointing shifts is observed.The authors acknowledge the financial support of the funding agencies: Centre National de la Recherche Scientifique, Commissariat `a l'' energie atomique et aux energies alternatives, Commission Europeenne (FEDER fund and Marie Curie Program), Institut Universitaire de France, LabEx UnivEarthS (ANR-10-LABX-0023 and ANR-18-IDEX-0001), R ' egion Ile-de-France (DIM-ACAV), Region Alsace (contract CPER), Region Provence-Alpes-Cote d'Azur, Departement du Var and Ville de La Seyne-sur-Mer, France; Bundesministerium fur Bildung und Forschung, Germany; Istituto Nazionale di Fisica Nucleare, Italy; Nederlandse organisatie voor Wetenschappelijk Onderzoek, the Netherlands; Council of the President of the Russian Federation for Young Scientists and Leading Scientific Schools supporting grants, Russia; Executive Unit for Financing Higher Education, Research, Development and Innovation (UEFISCDI), Romania; Ministerio de Ciencia, Innovacion, Investigacion y Universidades (MCIU): Programa Estatal de Generacion de Conocimiento (refs. PGC2018-096663-B-C41, -A-C42, -B-C43, -B-C44) (MCIU/FEDER), Severo Ochoa Centre of Excellence and MultiDark Consolider (MCIU), Junta de Andalucia (refs. SOMM17/6104/UGR and A-FQM-053-UGR18), Generalitat Valenciana: Grisolia (ref. GRISOLIA/2018/119), Spain; Ministry of Higher Education, Scientific Research and Professional Training, Morocco. We also acknowledge the technical support of Ifremer, AIM and Foselev Marine for the sea operation and the CC-IN2P3 for the computing facilities.Albert, A.; Andre, M.; Anghinolfi, M.; Anton, G.; Ardid Ramírez, M.; Aubert, J.; Aublin, J.... (2020). Observation of the cosmic ray shadow of the Sun with the ANTARES neutrino telescope. Physical Review D: covering particles, fields, gravitation, and cosmology. 102(12):1-7. https://doi.org/10.1103/PhysRevD.102.122007S1710212Ageron, M., Aguilar, J. A., Al Samarai, I., Albert, A., Ameli, F., André, M., … Ardid, M. (2011). ANTARES: The first undersea neutrino telescope. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 656(1), 11-38. doi:10.1016/j.nima.2011.06.103Alexandreas, D. E., Allen, R. C., Berley, D., Biller, S. D., Burman, R. L., Cady, D. R., … Zhang, W. (1991). Observation of shadowing of ultrahigh-energy cosmic rays by the Moon and the Sun. Physical Review D, 43(5), 1735-1738. doi:10.1103/physrevd.43.1735Andreyev, Y. M., Zakidyshev, V. N., Karpov, S. N., & Khodov, V. N. (2002). Cosmic Research, 40(6), 559-564. doi:10.1023/a:1021553713199Borione, A., Catanese, M., Covault, C. E., Cronin, J. W., Fick, B. E., Gibbs, K. G., … van der Velde, J. C. (1994). Observation of the shadows of the Moon and Sun using 100 TeV cosmic rays. Physical Review D, 49(3), 1171-1177. doi:10.1103/physrevd.49.1171Cobb, J. H., Marshak, M. L., Allison, W. W. M., Alner, G. J., Ayres, D. S., Barrett, W. L., … Wall, D. (2000). Observation of a shadow of the Moon in the underground muon flux in the Soudan 2 detector. Physical Review D, 61(9). doi:10.1103/physrevd.61.092002Bartoli, B., Bernardini, P., Bi, X. J., Bleve, C., Bolognino, I., Branchini, P., … Cao, Z. (2012). Measurement of the cosmic ray antiproton/proton flux ratio at TeV energies with the ARGO-YBJ detector. Physical Review D, 85(2). doi:10.1103/physrevd.85.022002Abeysekara, A. U., Albert, A., Alfaro, R., Alvarez, C., Álvarez, J. D., Arceo, R., … Belmont-Moreno, E. (2018). Constraining the
p¯/p
ratio in TeV cosmic rays with observations of the Moon shadow by HAWC. Physical Review D, 97(10). doi:10.1103/physrevd.97.102005Adamson, P., Andreopoulos, C., Ayres, D. S., Backhouse, C., Barr, G., Barrett, W. L., … Bock, G. J. (2011). Observation in the MINOS far detector of the shadowing of cosmic rays by the sun and moon. Astroparticle Physics, 34(6), 457-466. doi:10.1016/j.astropartphys.2010.10.010Aartsen, M. G., Ackermann, M., Adams, J., Aguilar, J. A., Ahlers, M., Ahrens, M., … Ansseau, I. (2019). Detection of the Temporal Variation of the Sun’s Cosmic Ray Shadow with the IceCube Detector. The Astrophysical Journal, 872(2), 133. doi:10.3847/1538-4357/aaffd1Albert, A., André, M., Anghinolfi, M., Anton, G., Ardid, M., Aubert, J.-J., … Barrios-Martít, J. (2018). The cosmic ray shadow of the Moon observed with the ANTARES neutrino telescope. The European Physical Journal C, 78(12). doi:10.1140/epjc/s10052-018-6451-3First search for neutrinos in correlation with gamma-ray bursts with the ANTARES neutrino telescope. (2013). Journal of Cosmology and Astroparticle Physics, 2013(03), 006-006. doi:10.1088/1475-7516/2013/03/006Aguilar, J. A., Al Samarai, I., Albert, A., André, M., Anghinolfi, M., Anton, G., … Astraatmadja, T. (2011). A fast algorithm for muon track reconstruction and its application to the ANTARES neutrino telescope. Astroparticle Physics, 34(9), 652-662. doi:10.1016/j.astropartphys.2011.01.003BECHERINI, Y., MARGIOTTA, A., SIOLI, M., & SPURIO, M. (2006). A parameterisation of single and multiple muons in the deep water or ice. Astroparticle Physics, 25(1), 1-13. doi:10.1016/j.astropartphys.2005.10.005Carminati, G., Bazzotti, M., Margiotta, A., & Spurio, M. (2008). Atmospheric MUons from PArametric formulas: a fast GEnerator for neutrino telescopes (MUPAGE). Computer Physics Communications, 179(12), 915-923. doi:10.1016/j.cpc.2008.07.014Yepes-Ramírez, H. (2013). Characterization of optical properties of the site of the ANTARES neutrino telescope. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 725, 203-206. doi:10.1016/j.nima.2012.11.143Fusco, L. A., & Margiotta, A. (2016). The Run-by-Run Monte Carlo simulation for the ANTARES experiment. EPJ Web of Conferences, 116, 02002. doi:10.1051/epjconf/201611602002Albert, A., André, M., Anghinolfi, M., Anton, G., Ardid, M., Aubert, J.-J., … Basa, S. (2017). First all-flavor neutrino pointlike source search with the ANTARES neutrino telescope. Physical Review D, 96(8). doi:10.1103/physrevd.96.082001Albert, A., André, M., Anghinolfi, M., Anton, G., Ardid, M., Aubert, J.-J., … Belhorma, B. (2020). ANTARES and IceCube Combined Search for Neutrino Point-like and Extended Sources in the Southern Sky. The Astrophysical Journal, 892(2), 92. doi:10.3847/1538-4357/ab7afbAdrián-Martínez, S., Albert, A., André, M., Anghinolfi, M., Anton, G., Ardid, M., … Basa, S. (2014). SEARCHES FOR POINT-LIKE AND EXTENDED NEUTRINO SOURCES CLOSE TO THE GALACTIC CENTER USING THE ANTARES NEUTRINO TELESCOPE. The Astrophysical Journal, 786(1), L5. doi:10.1088/2041-8205/786/1/l
Measurement of the atmospheric νe and νμ energy spectra with the ANTARES neutrino telescope
The authors acknowledge the financial support of the funding agencies: Centre National de la Recherche Scientifique (CNRS), Commissariat a l'Energie Atomique et aux Energies Alternatives(CEA), Commission Europeenne (FEDER fund and Marie Curie Program), Institut Universitaire de France (IUF), Labex UnivEarthS(ANR-10-LABX-0023 and ANR-18-IDEX-0001), Region Ile-de-France (DIM-ACAV), Region Alsace (contrat CPER), Region Provence-AlpesCote d'Azur, Departement du Var and Ville de La Seyne-sur-Mer, France; Bundesministerium fur Bildung und Forschung (BMBF), Germany; Instituto Nazionale di Fisica Nucleare(INFN), Italy; Nederlandse Organisatie voor Wetenschappelijk Onderzoek(NWO), the Netherlands; Council of the President of the Russian Federation for young scientists and leading scientific schools supporting grants, Russia; Executive Unit for Financing Higher Education, Research, Development and Innovation (UEFISCDI), Romania; Ministerio de Ciencia e Innovacion (MCI) and Agencia Estatal de Investigacion: Programa Estatal de Generacion de Conocimiento (refs. PGC2018096663-B-C41, -A-C42, -B-C43, -B-C44) (MCI/FEDER), Severo Ochoa Centre of Excellence and MultiDark Consolider, Junta de Andalucia (ref. SOMM17/6104/UGR and A-FQM-053-UGR18), Generalitat Valenciana: Grisolia (ref. GRISOLIA/2018/119) and GenT (ref. CIDEGENT/2018/034) programs, Spain; Ministry of Higher Education, Scientific Research and Professional Training, Morocco. We also acknowledge the technical support of Ifremer, AIM and Foselev Marine for the sea operation and the CC-IN2P3 for the computing facilities. The authors acknowledge the financial support of the funding agencies: Centre National de la Recherche Scientifique (CNRS), Commissariat a l'Energie Atomique et aux Energies Alternatives(CEA), Commission Europeenne (FEDER fund and Marie Curie Program), Institut Universitaire de France (IUF), Labex UnivEarthS(ANR-10-LABX-0023 and ANR-18-IDEX-0001), Region Ile-de-France (DIM-ACAV), Region Alsace (contrat CPER), Region Provence-AlpesCote d'Azur, Departement du Var and Ville de La Seyne-sur-Mer, France; Bundesministerium fur Bildung und Forschung (BMBF), Germany; Instituto Nazionale di Fisica Nucleare(INFN), Italy; Nederlandse Organisatie voor Wetenschappelijk Onderzoek(NWO), the Netherlands; Council of the President of the Russian Federation for young scientists and leading scientific schools supporting grants, Russia; Executive Unit for Financing Higher Education, Research, Development and Innovation (UEFISCDI), Romania; Ministerio de Ciencia e Innovacion (MCI) and Agencia Estatal de Investigacion: Programa Estatal de Generacion de Conocimiento (refs. PGC2018096663-B-C41, -A-C42, -B-C43, -B-C44) (MCI/FEDER), Severo Ochoa Centre of Excellence and MultiDark Consolider, Junta de Andalucia (ref. SOMM17/6104/UGR and A-FQM-053-UGR18), Generalitat Valenciana: Grisolia (ref. GRISOLIA/2018/119) and GenT (ref. CIDEGENT/2018/034) programs, Spain; Ministry of Higher Education, Scientific Research and Professional Training, Morocco. We also acknowledge the technical support of Ifremer, AIM and Foselev Marine for the sea operation and the CC-IN2P3 for the computing facilities.This letter presents a combined measurement of the energy spectra of atmospheric nu(e) and nu(mu) in the energy range between similar to 100 GeV and similar to 50 TeV with the ANTARES neutrino telescope. The analysis uses 3012 days of detector livetime in the period 2007-2017, and selects 1016 neutrinos interacting in (or close to) the instrumented volume of the detector, yielding shower-like events (mainly from nu(e) + (nu) over bar (e) charged current plus all neutrino neutral current interactions) and starting track events (mainly from nu(mu) + (nu) over bar (mu) charged current interactions). The contamination by atmospheric muons in the final sample is suppressed at the level of a few per mill by different steps in the selection analysis, including a Boosted Decision Tree classifier. The distribution of reconstructed events is unfolded in terms of electron and muon neutrino fluxes. The derived energy spectra are compared with previous measurements that, above 100 GeV, are limited to experiments in polar ice and, for nu(mu), to Super-Kamiokande.Centre National de la Recherche Scientifique (CNRS)French Atomic Energy CommissionCommission Europeenne (FEDER fund)Institut Universitaire de France (IUF)Labex UnivEarthS
ANR-10-LABX-0023
ANR-18-IDEX-0001Region Ile-de-FranceRegion Grand-EstRegion Provence-Alpes-Cote d'AzurRegion Provence-Alpes-Cote d'AzurFederal Ministry of Education & Research (BMBF)Instituto Nazionale di Fisica Nucleare(INFN), ItalyNetherlands Organization for Scientific Research (NWO)Netherlands GovernmentCouncil of the President of the Russian Federation for young scientists and leading scientific schools supporting grants, RussiaConsiliul National al Cercetarii Stiintifice (CNCS)Unitatea Executiva pentru Finantarea Invatamantului Superior, a Cercetarii, Dezvoltarii si Inovarii (UEFISCDI)Spanish Government
PGC2018096663-B-C41
PGC2018096663-A-C42
PGC2018096663-B-C43
PGC2018096663-B-C44Severo Ochoa Centre of Excellence and MultiDark ConsoliderJunta de Andalucia
SOMM17/6104/UGR
A-FQM-053-UGR18Generalitat Valenciana: Grisolia program, Spain
GRISOLIA/2018/119Generalitat Valenciana: GenT program, Spain
CIDEGENT/2018/034Ministry of Higher Education, Scientific Research and Professional Training, MoroccoAgencia Estatal de Investigacion
PGC2018096663-B-C41
PGC2018096663-A-C42
PGC2018096663-B-C43
PGC2018096663-B-C44Commission Europeenne (Marie Curie Program
Combined search for neutrinos from dark matter self-annihilation in the Galactic Center with ANTARES and IceCube
[EN] We present the results of the first combined dark matter search targeting the Galactic Center using the ANTARES and IceCube neutrino telescopes. For dark matter particles with masses from 50 to 1000 GeV, the sensitivities on the self-annihilation cross section set by ANTARES and IceCube are comparable, making this mass range particularly interesting for a joint analysis. Dark matter self-annihilation through the ¿+¿¿, ¿+¿¿, b¯b, and W+W¿ channels is considered for both the Navarro-Frenk-White and Burkert halo profiles. In the combination of 2101.6 days of ANTARES data and 1007 days of IceCube data, no excess over the expected background is observed. Limits on the thermally averaged dark matter annihilation cross section h¿A¿i are set. These limits present an improvement of up to a factor of 2 in the studied dark matter mass range with respect to the individual limits published by both collaborations. When considering dark matter particles with a mass of 200 GeV annihilating through the ¿þ¿¿ channel, the value obtained for the limit is 7.44 × 10¿24 cm3 s¿1 for the Navarro-Frenk-White halo profile. For the purpose of this joint analysis, the model parameters and the likelihood are unified, providing a benchmark for forthcoming dark matter searches performed by neutrino telescopes.The authors from the ANTARES Collaboration acknowledge the financial support of the following funding agencies: Centre National de la Recherche Scientifique (CNRS), Commissariat a l'energie atomique et auxenergies alternatives (CEA), Commission Europeenne (FEDER fund and Marie Curie Program), Institut Universitaire de France (IUF), IdEx program and UnivEarthS Labex program at Sorbonne Paris Cite (ANR-10-LABX-0023 and ANR-11IDEX-0005-02), Labex OCEVU (ANR-11-LABX-0060) and the A*MIDEX project (ANR-11-IDEX-0001-02), Region Ile-de-France (DIM-ACAV), Region Alsace (contrat CPER), Region Provence-Alpes-Cote d'Azur, Departement du Var and Ville de La Seyne-sur-Mer, France; Bundesministerium fur Bildung und Forschung (BMBF), Germany; Istituto Nazionale di Fisica Nucleare (INFN), Italy; Nederlandse organisatie voor Wetenschappelijk Onderzoek (NWO), the Netherlands; Council of the President of the Russian Federation for young scientists and leading scientific schools supporting grants, Russia; Executive Unit for Financing Higher Education, Research, Development and Innovation (UEFISCDI), Romania; Ministerio de Ciencia, Innovacion, Investigacion y Universidades (MCIU): Programa Estatal de Generacion de Conocimiento (refs. PGC2018-096663-B-C41, -A-C42, -B-C43, -B-C44) (MCIU/FEDER), Severo Ochoa Centre of Excellence and MultiDark Consolider (MCIU), Junta de Andalucia (ref. SOMM17/6104/UGR), Generalitat Valenciana: Grisolia (ref. GRISOLIA/2018/119), Spain; Ministry of Higher Education, Scientific Research and Professional Training, Morocco. We also acknowledge the technical support of Ifremer, AIM and Foselev Marine for the sea operation and CC-IN2P3 for the computing facilities. The authors from the IceCube Collaboration gratefully acknowledge the support from the following agencies and institutions: USA-U.S. National Science Foundation-Office of Polar Programs, U.S. National Science Foundation-Physics Division, Wisconsin Alumni Research Foundation, Center for High Throughput Computing (CHTC) at the University of Wisconsin-Madison, Open Science Grid (OSG), Extreme Science and Engineering Discovery Environment (XSEDE), U.S.
Department of Energy-National Energy Research Scientific Computing Center, Particle astrophysics research computing center at the University of Maryland, Institute for Cyber-Enabled Research at Michigan State University, and Astroparticle physics computational facility at Marquette University; Belgium-Funds for Scientific Research (FRS-FNRS and FWO), FWO Odysseus and Big Science programmes, and Belgian Federal Science Policy Office (Belspo); Germany-Bundesministerium fur Bildung und Forschung (BMBF), Deutsche Forschungsgemeinschaft (DFG), Helmholtz Alliance for Astroparticle Physics (HAP), Initiative and Networking Fund of the Helmholtz Association, Germany-Deutsches Elektronen Synchrotron (DESY), and High Performance Computing cluster of the RWTH Aachen; Sweden-Swedish Research Council, Swedish Polar Research Secretariat, Swedish National Infrastructure for Computing (SNIC), and Knut and Alice Wallenberg Foundation; Australia-Australian Research Council; Canada-Natural Sciences and Engineering Research Council of Canada, Calcul Quebec, Compute Ontario, Canada Foundation for Innovation, WestGrid, and Compute Canada; Denmark-Villum Fonden, Danish National Research Foundation (DNRF), Carlsberg Foundation; New Zealand-Marsden Fund; Japan-Japan Society for Promotion of Science (JSPS) and Institute for Global Prominent Research (IGPR) of Chiba University; Korea-National Research Foundation of Korea (NRF); Switzerland-Swiss National Science Foundation (SNSF); United Kingdom-Department of Physics, University of Oxford. The IceCube collaboration acknowledges the significant contributions to this manuscript from Sebastian Baur, Nadege Iovine and Sara Rebecca Gozzini.Albert, A.; Andre, M.; Anghinolfi, M.; Ardid Ramírez, M.; Aubert, J.; Aublin, J.; Baret, B.... (2020). Combined search for neutrinos from dark matter self-annihilation in the Galactic Center with ANTARES and IceCube. Physical Review D: covering particles, fields, gravitation, and cosmology. 102(8):1-13. https://doi.org/10.1103/PhysRevD.102.082002S113102
- …