282 research outputs found
A Personalized Self-Management Rehabilitation System with an Intelligent Shoe for Stroke Survivors: A Realist Evaluation
Background: In the United Kingdom, stroke is the most significant cause of adult disability. Stroke survivors are frequently
left with physical and psychological changes that can profoundly affect their functional ability, independence, and social
participation. Research suggests that long-term, intense, task- and context-specific rehabilitation that is goal-oriented and
environmentally enriched improves function, independence, and quality of life after a stroke. It is recommended that rehabilitation
should continue until maximum recovery has been achieved. However, the increasing demand on services and financial constraints
means that needs cannot be met through traditional face-to-face delivery of rehabilitation. Using a participatory design methodology,
we developed an information communication technology–enhanced Personalized Self-Managed rehabilitation System (PSMrS)
for stroke survivors with integrated insole sensor technology within an “intelligent shoe.”. The intervention model was based
around a rehabilitation paradigm underpinned by theories of motor relearning and neuroplastic adaptation, motivational feedback,
self-efficacy, and knowledge transfer.
Objective: To understand the conditions under which this technology-based rehabilitation solution would most likely have an
impact on the motor behavior of the user, what would work for whom, in what context, and how. We were interested in what
aspects of the system would work best to facilitate the motor behavior change associated with self-managed rehabilitation and
which user characteristics and circumstances of use could promote improved functional outcomes.
Methods: We used a Realist Evaluation (RE) framework to evaluate the final prototype PSMrS with the assumption that the
intervention consists of a series of configurations that include the Context of use, the underlying Mechanisms of change and the
potential Outcomes or impacts (CMOs). We developed the CMOs from literature reviews and engagement with clinicians, users,
and caregivers during a series of focus groups and home visits. These CMOs were then tested in five in-depth case studies with
stroke survivors and their caregivers.
Results: While two new propositions emerged, the second importantly related to the self-management aspects of the system.
The study revealed that the system should also encourage independent use and the setting of personalized goals or activities.
Conclusions: Information communication technology that purports to support the self-management of stroke rehabilitation
should give significant consideration to the need for motivational feedback that provides quantitative, reliable, accurate,
context-specific, and culturally sensitive information about the achievement of personalized goal-based activities
Altered primary motor cortex structure, organisation and function in chronic pain: a systematic review and meta-analysis
Recommended from our members
Linkage analysis of X-linked cone-rod dystrophy: localization to Xp11.4 and definition of a locus distinct from RP2 and RP3.
Glatiramer Acetate Treatment Normalizes Deregulated microRNA Expression in Relapsing Remitting Multiple Sclerosis
The expression of selected microRNAs (miRNAs) known to be involved in the regulation of immune responses was analyzed in 74 patients with relapsing remitting multiple sclerosis (RRMS) and 32 healthy controls. Four miRNAs (miR-326, miR-155, miR-146a, miR-142-3p) were aberrantly expressed in peripheral blood mononuclear cells from RRMS patients compared to controls. Although expression of these selected miRNAs did not differ between treatment-naïve (n = 36) and interferon-beta treated RRMS patients (n = 18), expression of miR-146a and miR-142-3p was significantly lower in glatiramer acetate (GA) treated RRMS patients (n = 20) suggesting that GA, at least in part, restores the expression of deregulated miRNAs in MS
No evidence for an association between the -36A>C phospholamban gene polymorphism and a worse prognosis in heart failure
Background: In Brazil, heart failure leads to approximately 25,000 deaths per year. Abnormal calcium handling is a hallmark of heart failure and changes in genes encoding for proteins involved in the re-uptake of calcium might harbor mutations leading to inherited cardiomyopathies. Phospholamban (PLN) plays a prime role in cardiac contractility and relaxation and mutations in the gene encoding PLN have been associated with dilated cardiomyopathy. In this study, our objective was to determine the presence of the -36A>C alteration in PLN gene in a Brazilian population of individuals with HF and to test whether this alteration is associated with heart failure or with a worse prognosis of patients with HF. Methods: We genotyped a cohort of 881 patients with HF and 1259 individuals from a cohort of individuals from the general population for the alteration -36A>C in the PLN gene. Allele and genotype frequencies were compared between groups (patients and control). In addition, frequencies or mean values of different phenotypes associated with cardiovascular disease were compared between genotypic groups. Finally, patients were prospectively followed-up for death incidence and genotypes for the -36A>C were compared regarding mortality incidence in HF patients. Results: No significant association was found between the study polymorphism and HF in our population. In addition, no association between PLN -36A>C polymorphism and demographic, clinical and functional characteristics and mortality incidence in this sample of HF patients was observed. Conclusion: Our data do not support a role for the PLN -36A>C alteration in modulating the heart failure phenotype, including its clinical course, in humans
Molecular signatures of maturing dendritic cells: implications for testing the quality of dendritic cell therapies
<p>Abstract</p> <p>Background</p> <p>Dendritic cells (DCs) are often produced by granulocyte-macrophage colony-stimulating factor (GM-CSF) and interleukin-4 (IL-4) stimulation of monocytes. To improve the effectiveness of DC adoptive immune cancer therapy, many different agents have been used to mature DCs. We analyzed the kinetics of DC maturation by lipopolysaccharide (LPS) and interferon-γ (IFN-γ) induction in order to characterize the usefulness of mature DCs (mDCs) for immune therapy and to identify biomarkers for assessing the quality of mDCs.</p> <p>Methods</p> <p>Peripheral blood mononuclear cells were collected from 6 healthy subjects by apheresis, monocytes were isolated by elutriation, and immature DCs (iDCs) were produced by 3 days of culture with GM-CSF and IL-4. The iDCs were sampled after 4, 8 and 24 hours in culture with LPS and IFN-γ and were then assessed by flow cytometry, ELISA, and global gene and microRNA (miRNA) expression analysis.</p> <p>Results</p> <p>After 24 hours of LPS and IFN-γ stimulation, DC surface expression of CD80, CD83, CD86, and HLA Class II antigens were up-regulated. Th1 attractant genes such as CXCL9, CXCL10, CXCL11 and CCL5 were up-regulated during maturation but not Treg attractants such as CCL22 and CXCL12. The expression of classical mDC biomarker genes CD83, CCR7, CCL5, CCL8, SOD2, MT2A, OASL, GBP1 and HES4 were up-regulated throughout maturation while MTIB, MTIE, MTIG, MTIH, GADD45A and LAMP3 were only up-regulated late in maturation. The expression of miR-155 was up-regulated 8-fold in mDCs.</p> <p>Conclusion</p> <p>DCs, matured with LPS and IFN-γ, were characterized by increased levels of Th1 attractants as opposed to Treg attractants and may be particularly effective for adoptive immune cancer therapy.</p
The risk of child and adolescent overweight is related to types of food consumed
<p>Abstract</p> <p>Background/Aims</p> <p>To investigate the association between the risk of overweight and the consumption of food groups in children and adolescents.</p> <p>Methods</p> <p>We studied 1764 healthy children and adolescents (age 6-19y) attending 16 Seventh-Day Adventist schools and 13 public schools using a 106-item non-quantitative food frequency questionnaire from the late 1980 Child-Adolescent Blood Pressure Study. Logistic regression models were used to compute the risk of overweight according to consumption of grains, nuts, vegetables, fruits, meats/fish/eggs, dairy, and, low nutrient-dense foods (LNDF).</p> <p>Results</p> <p>The frequency of consumption of grains, nuts, vegetables and LNDF were inversely related to the risk of being overweight and dairy increased the risk. Specifically, the odds ratio (95% CI) for children in the highest quartile or tertile of consumption compared with the lowest quartile or tertile were as follows: grains 0.59(0.41-0.83); nuts 0.60(0.43-0.85); vegetables 0.67(0.48-0.94); LNDF 0.43(0.29-0.63); and, dairy 1.36(0.97, 1.92).</p> <p>Conclusion</p> <p>The regular intake of specific plant foods may prevent overweight among children and adolescents.</p
Shared Genetics of Multiple System Atrophy and Inflammatory Bowel Disease
BACKGROUND: Multiple system atrophy (MSA) is a rare neurodegenerative disease characterized by intracellular accumulations of α-synuclein and nerve cell loss in striatonigral and olivopontocerebellar structures. Epidemiological and clinical studies have reported potential involvement of autoimmune mechanisms in MSA pathogenesis. However, genetic etiology of this interaction remains unknown. We aimed to investigate genetic overlap between MSA and 7 autoimmune diseases and to identify shared genetic loci. METHODS: Genome-wide association study summary statistics of MSA and 7 autoimmune diseases were combined in cross-trait conjunctional false discovery rate analysis to explore overlapping genetic background. Expression of selected candidate genes was compared in transgenic MSA mice and wild-type mice. Genetic variability of candidate genes was further investigated using independent whole-exome genotyping data from large cohorts of MSA and autoimmune disease patients and healthy controls. RESULTS: We observed substantial polygenic overlap between MSA and inflammatory bowel disease and identified 3 shared genetic loci with leading variants upstream of the DENND1B and RSP04 genes, and in intron of the C7 gene. Further, the C7 gene showed significantly dysregulated expression in the degenerating midbrain of transgenic MSA mice compared with wild-type mice and had elevated burden of protein-coding variants in independent MSA and inflammatory bowel disease cohorts. CONCLUSION: Our study provides evidence of shared genetic etiology between MSA and inflammatory bowel disease with an important role of the C7 gene in both phenotypes, with the implication of immune and gut dysfunction in MSA pathophysiology. © 2020 The Authors. Movement Disorders published by Wiley Periodicals LLC. on behalf of International Parkinson and Movement Disorder Society
Seasonal and Long-Term Changes in Relative Abundance of Bull Sharks from a Tourist Shark Feeding Site in Fiji
Shark tourism has become increasingly popular, but remains controversial because
of major concerns originating from the need of tour operators to use bait or
chum to reliably attract sharks. We used direct underwater sampling to document
changes in bull shark Carcharhinus leucas relative abundance at
the Shark Reef Marine Reserve, a shark feeding site in Fiji, and the
reproductive cycle of the species in Fijian waters. Between 2003 and 2009, the
total number of C. leucas counted on each day ranged from 0 to
40. Whereas the number of C. leucas counted at the feeding site
increased over the years, shark numbers decreased over the course of a calendar
year with fewest animals counted in November. Externally visible reproductive
status information indicates that the species' seasonal departure from the
feeding site may be related to reproductive activity
Three-Dimensional Imaging of Drosophila melanogaster
The major hindrance to imaging the intact adult Drosophila is that the dark exoskeleton makes it impossible to image through the cuticle. We have overcome this obstacle and describe a method whereby the internal organs of adult Drosophila can be imaged in 3D by bleaching and clearing the adult and then imaging using a technique called optical projection tomography (OPT). The data is displayed as 2D optical sections and also in 3D to provide detail on the shape and structure of the adult anatomy.We have used OPT to visualize in 2D and 3D the detailed internal anatomy of the intact adult Drosophila. In addition this clearing method used for OPT was tested for imaging with confocal microscopy. Using OPT we have visualized the size and shape of neurodegenerative vacuoles from within the head capsule of flies that suffer from age-related neurodegeneration due to a lack of ADAR mediated RNA-editing. In addition we have visualized tau-lacZ expression in 2D and 3D. This shows that the wholemount adult can be stained without any manipulation and that this stain penetrates well as we have mapped the localization pattern with respect to the internal anatomy.We show for the first time that the intact adult Drosophila can be imaged in 3D using OPT, also we show that this method of clearing is also suitable for confocal microscopy to image the brain from within the intact head. The major advantage of this is that organs can be represented in 3D in their natural surroundings. Furthermore optical sections are generated in each of the three planes and are not prone to the technical limitations that are associated with manual sectioning. OPT can be used to dissect mutant phenotypes and to globally map gene expression in both 2D and 3D
- …
