78 research outputs found

    Mechanisms underlying a thalamocortical transformation during active tactile sensation

    Get PDF
    During active somatosensation, neural signals expected from movement of the sensors are suppressed in the cortex, whereas information related to touch is enhanced. This tactile suppression underlies low-noise encoding of relevant tactile features and the brain’s ability to make fine tactile discriminations. Layer (L) 4 excitatory neurons in the barrel cortex, the major target of the somatosensory thalamus (VPM), respond to touch, but have low spike rates and low sensitivity to the movement of whiskers. Most neurons in VPM respond to touch and also show an increase in spike rate with whisker movement. Therefore, signals related to self-movement are suppressed in L4. Fast-spiking (FS) interneurons in L4 show similar dynamics to VPM neurons. Stimulation of halorhodopsin in FS interneurons causes a reduction in FS neuron activity and an increase in L4 excitatory neuron activity. This decrease of activity of L4 FS neurons contradicts the "paradoxical effect" predicted in networks stabilized by inhibition and in strongly-coupled networks. To explain these observations, we constructed a model of the L4 circuit, with connectivity constrained by in vitro measurements. The model explores the various synaptic conductance strengths for which L4 FS neurons actively suppress baseline and movement-related activity in layer 4 excitatory neurons. Feedforward inhibition, in concert with recurrent intracortical circuitry, produces tactile suppression. Synaptic delays in feedforward inhibition allow transmission of temporally brief volleys of activity associated with touch. Our model provides a mechanistic explanation of a behavior-related computation implemented by the thalamocortical circuit

    Genome-Wide Joint Meta-Analysis of SNP and SNP-by-Smoking Interaction Identifies Novel Loci for Pulmonary Function

    Get PDF

    ATHENA detector proposal — a totally hermetic electron nucleus apparatus proposed for IP6 at the Electron-Ion Collider

    Get PDF
    ATHENA has been designed as a general purpose detector capable of delivering the full scientific scope of the Electron-Ion Collider. Careful technology choices provide fine tracking and momentum resolution, high performance electromagnetic and hadronic calorimetry, hadron identification over a wide kinematic range, and near-complete hermeticity. This article describes the detector design and its expected performance in the most relevant physics channels. It includes an evaluation of detector technology choices, the technical challenges to realizing the detector and the R&D required to meet those challenges

    Search for resonances decaying into photon pairs in 139 fb−1 of pp collisions at √s = 13 TeV with the ATLAS detector

    Get PDF
    Searches for new resonances in the diphoton final state, with spin 0 as predicted by theories with an extended Higgs sector and with spin 2 using a warped extra-dimension benchmark model, are presented using 139 fb−1 of √s = 13 TeV pp collision data collected by the ATLAS experiment at the LHC. No significant deviation from the Standard Model is observed and upper limits are placed on the production cross-section times branching ratio to two photons as a function of the resonance mass

    The languages of South America: deep families, areal relationships, and language contact

    Full text link
    After summarizing the earlier chapters, we sketch a general overview of the different phases in the development of South America. We then explore the possibility of a continental bias for typological features characteristic of South America, which may point to the early entry of a limited set of features into the continent. Subsequently we analyze possible deep families or macro-groups in the continent, and their regional distribution. We then turn to the issue of whether different subsets of structural features yield different distance matrices for the language families studied. To further explore contact possibilities, the results for language contact in our book are charted. Finally, we conclude and take stock of what has been achieved and how further research should proceed

    Radiogenic isotope record of magma genesis and lithospheric geodynamics of the Rukwa Rift Basin, Tanzania, from mid Mesozoic to present

    No full text
    The Western Branch of the East African Rift System has experienced multiple episodes of basin development and intraplate alkaline volcanism since the Jurassic, however the geodynamic processes and lithospheric evolution involved in this protracted geological history remains poorly defined. Here, we present Sm-Nd, Lu-Hf, and Rb-Sr isotopic data of igneous minerals for three magmatic episodes that coincide with basin reactivation in the Rukwa Rift of southwestern Tanzania, respectively represented by: (1) the Jurassic to Cretaceous Panda Hill carbonatite; (2) the late Oligocene phonolitic-carbonatitic Nsungwe Formation tuffs; and (3) the Miocene-recent bi-modal volcanism of the Rungwe Volcanic Province. Of these, the Nsungwe Formation tuffs offer a discrete record of the early phases of lithospheric disturbance associated with modern rifting of the Western Branch. Alkaline magmas erupted prior to the Miocene are isotopically distinct (epsilon Nd +0.5 to +1.5 and Sr-87/Sr-86 0.7041) from modern Rungwe lavas and likely originate from a lithospheric mantle that experienced enrichment during the Pan-African Orogeny (similar to 550-700 Ma). Consistent with previous studies, our results indicate that Rungwe Volcanic Province magmas were generated from a mixed, isotopically-enriched component of the lithospheric mantle that may have developed during the ca. 1.0 Ga Irumide Orogeny. The observed change in the source region of rift lavas though time is consistent with progressing melting of a compositionally layered lithosphere. Combined with existing geophysical and sedimentological data, we hypothesise that the lithosphere beneath the Rukwa-Malawi-Usangu junction of the Western Branch experienced an episode of destabilisation and foundering (lithospheric drip), during the early stages of East African Rift development
    corecore