231 research outputs found

    Copy Number Variations Due to Large Genomic Deletion in X-Linked Chronic Granulomatous Disease

    Get PDF
    Mutations in genes for any of the six subunits of NADPH oxidase cause chronic granulomatous disease (CGD), but almost 2/3 of CGD cases are caused by mutations in the X-linked CYBB gene, also known as NAD (P) H oxidase 2. Approximately 260 patients with CGD have been reported in Japan, of whom 92 were shown to have mutations of the CYBB gene and 16 to have chromosomal deletions. However, there has been very little detailed analysis of the range of the deletion or close understanding of the disease based on this. We therefore analyzed genomic rearrangements in X-linked CGD using array comparative genomic hybridization analysis, revealing the extent and the types of the deletion genes. The subjects were five Japanese X-linked CGD patients estimated to have large base deletions of 1 kb or more in the CYBB gene (four male patients, one female patient) and the mothers of four of those patients. The five Japanese patients were found to range from a patient exhibiting deletions only of the CYBB gene to a female patient exhibiting an extensive DNA deletion and the DMD and CGD phenotype manifested. Of the other three patients, two exhibited CYBB, XK, and DYNLT3 gene deletions. The remaining patient exhibited both a deletion encompassing DNA subsequent to the CYBB region following intron 2 and the DYNLT3 gene and a complex copy number variation involving the insertion of an inverted duplication of a region from the centromere side of DYNLT3 into the deleted region

    Robust and highly efficient hiPSC generation from patient non-mobilized peripheral blood-derived CD34+ cells using the auto-erasable Sendai virus vector

    Get PDF
    Background: Disease modeling with patient-derived induced pluripotent stem cells (iPSCs) is a powerful tool forelucidating the mechanisms underlying disease pathogenesis and developing safe and effective treatments. Patientperipheral blood (PB) cells are used for iPSC generation in many cases since they can be collected with minimuminvasiveness. To derive iPSCs that lack immunoreceptor gene rearrangements, hematopoietic stem and progenitorcells (HSPCs) are often targeted as the reprogramming source. However, the current protocols generally requireHSPC mobilization and/or ex vivo expansion owing to their sparsity at the steady state and low reprogrammingefficiencies, making the overall procedure costly, laborious, and time-consuming.Methods: We have established a highly efficient method for generating iPSCs from non-mobilized PB-derivedCD34+ HSPCs. The source PB mononuclear cells were obtained from 1 healthy donor and 15 patients and werekept frozen until the scheduled iPSC generation. CD34+ HSPC enrichment was done using immunomagnetic beads,with no ex vivo expansion culture. To reprogram the CD34+-rich cells to pluripotency, the Sendai virus vectorSeVdp-302L was used to transfer four transcription factors: KLF4, OCT4, SOX2, and c-MYC. In this iPSC generationseries, the reprogramming efficiencies, success rates of iPSC line establishment, and progression time wererecorded. After generating the iPSC frozen stocks, the cell recovery and their residual transgenes, karyotypes, T cellreceptor gene rearrangement, pluripotency markers, and differentiation capability were examined.Results:We succeeded in establishing 223 iPSC lines with high reprogramming efficiencies from 15 patients with 8 different disease types. Our method allowed the rapid appearance of primary colonies (~ 8 days), all of which were expandable under feeder-free conditions, enabling robust establishment steps with less workload. After thawing, the established iPSC lines were verified to be pluripotency marker-positive and of non-T cell origin. A majority of the iPSC lines were confirmed to be transgene-free, with normal karyotypes. Their trilineage differentiation capability was also verified in a defined in vitro assay.Conclusion:This robust and highly efficient method enables the rapid and cost-effective establishment of transgene-free iPSC lines from a small volume of PB, thus facilitating the biobanking of patient-derived iPSCs and their use for the modeling of various diseases

    Effect of Canagliflozin on Renal Threshold for Glucose, Glycemia, and Body Weight in Normal and Diabetic Animal Models

    Get PDF
    Background: Canagliflozin is a sodium glucose co-transporter (SGLT) 2 inhibitor in clinical development for the treatment of type 2 diabetes mellitus (T2DM). Methods: 14 C-alpha-methylglucoside uptake in Chinese hamster ovary-K cells expressing human, rat, or mouse SGLT2 or SGLT1; 3 H-2-deoxy-D-glucose uptake in L6 myoblasts; and 2-electrode voltage clamp recording of oocytes expressing human SGLT3 were analyzed. Graded glucose infusions were performed to determine rate of urinary glucose excretion (UGE) at different blood glucose (BG) concentrations and the renal threshold for glucose excretion (RTG) in vehicle or canagliflozin-treated Zucker diabetic fatty (ZDF) rats. This study aimed to characterize the pharmacodynamic effects of canagliflozin in vitro and in preclinical models of T2DM and obesity. Results: Treatment with canagliflozin 1 mg/kg lowered RT G from 415612 mg/dl to 94610 mg/dl in ZDF rats while maintaining a threshold relationship between BG and UGE with virtually no UGE observed when BG was below RTG. Canagliflozin dose-dependently decreased BG concentrations in db/db mice treated acutely. In ZDF rats treated for 4 weeks, canagliflozin decreased glycated hemoglobin (HbA1c) and improved measures of insulin secretion. In obese animal models, canagliflozin increased UGE and decreased BG, body weight gain, epididymal fat, liver weight, and the respiratory exchange ratio

    Development and potential role of type-2 sodium-glucose transporter inhibitors for management of type 2 diabetes

    Get PDF
    There is a recognized need for new treatment options for type 2 diabetes mellitus (T2DM). Recovery of glucose from the glomerular filtrate represents an important mechanism in maintaining glucose homeostasis and represents a novel target for the management of T2DM. Recovery of glucose from the glomerular filtrate is executed principally by the type 2 sodium-glucose cotransporter (SGLT2). Inhibition of SGLT2 promotes glucose excretion and normalizes glycemia in animal models. First reports of specifically designed SGLT2 inhibitors began to appear in the second half of the 1990s. Several candidate SGLT2 inhibitors are currently under development, with four in the later stages of clinical testing. The safety profile of SGLT2 inhibitors is expected to be good, as their target is a highly specific membrane transporter expressed almost exclusively within the renal tubules. One safety concern is that of glycosuria, which could predispose patients to increased urinary tract infections. So far the reported safety profile of SGLT2 inhibitors in clinical studies appears to confirm that the class is well tolerated. Where SGLT2 inhibitors will fit in the current cascade of treatments for T2DM has yet to be established. The expected favorable safety profile and insulin-independent mechanism of action appear to support their use in combination with other antidiabetic drugs. Promotion of glucose excretion introduces the opportunity to clear calories (80–90 g [300–400 calories] of glucose per day) in patients that are generally overweight, and is expected to work synergistically with weight reduction programs. Experience will most likely lead to better understanding of which patients are likely to respond best to SGLT2 inhibitors, and under what circumstances

    Augmented reality-based affective training for improving care communication skill and empathy

    Get PDF
    It is important for caregivers of people with dementia (PwD) to have good patient communication skills as it has been known to reduce the behavioral and psychological symptoms of dementia (BPSD) of PwD as well as caregiver burnout. However, acquiring such skills often requires one-on-one affective training, which can be costly. In this study, we propose affective training using augmented reality (AR) for supporting the acquisition of such skills. The system uses see-through AR glasses and a nursing training doll to train the user in both practical nursing skills and affective skills such as eye contact and patient communication. The experiment was conducted with 38 nursing students. The participants were assigned to either the Doll group, which only used a doll for training, or the AR group, which used both a doll and the AR system. The results showed that eye contact significantly increased and the face-to-face distance and angle decreased in the AR group, while the Doll group had no significant difference. In addition, the empathy score of the AR group significantly increased after the training. Upon analyzing the correlation between personality and changes of physical skills, we found a significant positive correlation between the improvement rate of eye contact and extraversion in the AR group. These results demonstrated that affective training using AR is effective for improving caregivers' physical skills and their empathy for their patients. We believe that this system will be beneficial not only for dementia caregivers but for anyone looking to improve their general communication skills
    corecore