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Abstract
Aims/hypothesis In rodent models of diabetes, treatment
with sodium glucose co-transporter 2 (SGLT2) inhibitors
improves beta cell function. This analysis assessed the
effects of the SGLT2 inhibitor, canagliflozin, on model-
based measures of beta cell function in patients with
type 2 diabetes.
Methods Data from three Phase 3 studies were analysed, in
which: (Study 1) canagliflozin 100 and 300 mg were
compared with placebo as monotherapy for 26 weeks;
(Study 2) canagliflozin 100 and 300 mg were compared
with placebo as add-on to metformin+sulfonylurea for
26 weeks; or (Study 3) canagliflozin 300 mg was com-
pared with sitagliptin 100 mg as add-on to metformin+
sulfonylurea for 52 weeks. In each study, a subset of
patients was given mixed-meal tolerance tests at base-
line and study endpoint, and model-based beta cell
function parameters were calculated from plasma glu-
cose and C-peptide.

Results In Studies 1 and 2, both canagliflozin doses increased
beta cell glucose sensitivity compared with placebo. Placebo-
subtracted least squares mean (LSM) (SEM) changes were 23
(9) and 18 (9) pmol min−1 m−2 (mmol/l)−1 with canagliflozin
100 and 300 mg, respectively (p<0.002, Study 1), and 16 (8)
and 10 (9) pmol min−1 m−2 (mmol/l)−1 (p<0.02, Study 2). In
Study 3, beta cell glucose sensitivity was minimally affected,
but the insulin secretion rate at 9 mmol/l glucose increased to
similar degrees from baseline with canagliflozin and sitagliptin
[LSM (SEM) changes 38 (8) and 28 (9) pmol min−1 m−2,
respectively; p<0.05 for both].
Conclusions/interpretation Treatment with canagliflozin for 6
to 12 months improved model-based measures of beta cell
function in three separate Phase 3 studies.
Trial registration: Clinicaltrials.gov NCT01081834 (Study 1);
NCT01106625 (Study 2); NCT01137812 (Study 3)
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Introduction

Defects in beta cell function, including reduced insulin secre-
tion and reduced efficiency of proinsulin conversion to insu-
lin, are key pathophysiological factors underlying the
hyperglycaemia of patients with type 2 diabetes mellitus
[1, 2]. Declining beta cell function is a major contributing
factor to the progressive nature of type 2 diabetes, with many
patients eventually requiring insulin therapy to achieve and
maintain glycaemic control [3, 4]. Glucose-lowering agents,
which in addition to lowering plasma glucose levels, can
improve beta cell function or slow the progression of beta cell
dysfunction, may be useful for the long-term management of
type 2 diabetes [1].

Pharmacological inhibition of the sodium glucose co-
transporter 2 (SGLT2) is a novel approach to lowering plasma
glucose in individuals with hyperglycaemia. SGLT2 inhibitors
block renal glucose reabsorption and lower the renal
threshold for glucose, thereby markedly increasing uri-
nary glucose excretion (UGE) [5, 6]. Studies in animals
have shown that beta cell function is restored when
normoglycaemia is achieved by treatment with SGLT2
inhibitors [7–10]. The improvements in beta cell func-
tion observed in animal models are believed to be
secondary to the improved glucose control, rather than
due to direct effects of SGLT2 inhibitors on beta cells.

Canagliflozin is an SGLT2 inhibitor developed for the
treatment of patients with type 2 diabetes [11–18]. In Phase
3 clinical studies, canagliflozin 100 and 300 mg provided
significant improvements in glycaemic control in adult pa-
tients with type 2 diabetes, both asmonotherapy and as add-on
therapy to various background diabetes treatments [11–13,
15–17]. In addition, three clinical studies have evaluated the
effects of canagliflozin treatment on measures of beta cell
function in patients with type 2 diabetes. The first
(Study 1) [16] was a study of canagliflozin 100 and
300 mg monotherapy compared with placebo at
26 weeks. The second (Study 2) [18] studied
canagliflozin 100 and 300 mg as add-on therapy to
metformin plus a sulfonylurea compared with placebo
at 26 weeks; and the third (Study 3) [15] studied
canagliflozin 300 mg as add-on therapy to metformin
plus a sulfonylurea compared with sitagliptin 100 mg at
52 weeks. In these studies, canagliflozin treatment was
generally associated with improvements in surrogate
measures of beta cell function, including HOMA-2-
derived beta cell function (HOMA2-%B), the proinsulin:
C-peptide ratio and the C-peptide AUC:glucose AUC ratio.
The current report presents further data from these three
studies characterising the effects of canagliflozin treatment
on additional indices of beta cell function obtained from the
model-based analysis of plasma glucose and C-peptide re-
sponses to mixed-meal tolerance tests (MMTTs).

Methods

Patients and study design Study 1 (canagliflozin monothera-
py; ClinicalTrials.gov identifier NCT01081834) [16] and
Study 2 (canagliflozin as add-on to metformin and sulfonyl-
urea; ClinicalTrials.gov identifier NCT01106625) [18] were
both randomised, double-blind, placebo-controlled, Phase 3
studies with a 26 week core treatment period followed by a
26 week extension period; findings on beta cell function from
the core treatment periods are reported here. Study 3
(ClinicalTrials.gov identifier NCT01137812) [15] was a
52 week, randomised, double-blind, active-controlled, Phase
3 study comparing canagliflozin 300 mg with sitagliptin
100 mg as add-on therapy to metformin plus sulfonylurea.
Details of study design, including patient inclusion and exclu-
sion criteria, have been previously reported [15, 16, 18]. For
all three studies, key aspects of study design, eligibility criteria
and patient populations are summarised in Table 1.

These studies were conducted in accordance with the eth-
ical principles detailed in the Declaration of Helsinki, and are
consistent with good clinical practice and applicable regula-
tory requirements. Approval of the study protocols and
amendments was obtained from institutional review boards
and independent ethics committees of the participating cen-
tres. All patients provided informed written consent prior to
participation.

Randomisation and study treatments In Studies 1 and 2, pa-
tients were randomly assigned to receive daily oral doses of
canagliflozin 100 or 300mg or placebo (1:1:1); randomisation
was stratified according to whether individuals had participat-
ed in the frequently sampled (FS)-MMTT (Studies 1 and 2),
and whether they were taking glucose-lowering agents at
screening (Study 1) or had begun a glucose-lowering agent
adjustment period (Study 2). In Study 3, patients were ran-
domly assigned to receive daily oral doses of canagliflozin
300 mg or sitagliptin 100 mg (1:1). Randomisation was strati-
fied according to whether individuals had participated in the FS-
MMTT and whether their pre-randomisation HbA1c value was
≥9.0% (75 mmol/mol).

In Studies 1 and 2, glycaemic rescue therapy with metfor-
min (Study 1) or insulin (Study 2) was initiated at fasting
plasma glucose (FPG) >15.0 mmol/l (270 mg/dl) from Day 1
to Week 6, >13.3 mmol/l (240 mg/dl) from Week 6 to Week
12 and >11.1 mmol/l (200 mg/dl) from Week 12 to Week 26.
No glycaemic rescue therapy was provided in Study 3; patients
meeting pre-specified glycaemic criteria (same as for Studies 1
and 2 through to Week 26, HbA1c >8.0% [64 mmol/mol] after
Week 26) were discontinued.

Endpoints and assessments A subset of patients from each
study underwent an FS-MMTT on Day 1 and at Week 26 in
Studies 1 and 2, and atWeek 52 in Study 3. For the Day 1 test,
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patients took their first dose of study medication after blood
samples for the MMTTwere collected. For the FS-MMTT at
Week 26 (Studies 1 and 2) or Week 52 (Study 3), the last dose
of study medication was administered approximately 30 min
before the start of the standard meal. Patients fasted for at least

8 h before the start of the FS-MMTT. The standardised meal
was given between 07:00 and 10:00 hours, and consisted of
two servings of liquid supplement containing approximately
100 g of total carbohydrates and approximately 2930 kJ
(700 kcal). Water or non-caffeinated energy-free beverages

Table 1 Summary of study designs and patient populations

Study characteristics Eligibility criteria mITT population (FS-MMTT subset), n

Study Treatment Comparator Durationa Agec HbA1c
d FPGe eGFRf PBO CANA 100 CANA 300 SITA 100

1 Monotherapy [16] PBO 26b 18–80 7.0–10.0 (53–86) <15.0 (270) ≥50 192 (76) 195 (79) 197 (80) NA

2 Add-on to
MET+SU [18]

PBO 26b 18–80 7.0–10.5 (53–91) <15.0 (270) ≥55g 156 (55) 157 (57) 156 (56) NA

3 Add-on to
MET+SU [15]

SITA 52 ≥18 7.0–10.5 (53–91) <16.7 (300) ≥55g NA NA 377 (125) 378 (124)

a In weeks
b Results from the 26-week core treatment period are reported here; study also included a 26-week extension period
c In years
d In % (mmol/mol)
e In mmol/l (mg/dl)
f In ml min−1 (1.73 m2 )−1

g eGFR ≥60 ml min−1 (1.73 m2 )−1 if required, based on the local MET label

CANA 100, canagliflozin 100 mg; CANA 300, canagliflozin 300 mg; eGFR, estimated GFR; MET, metformin; NA, not applicable; PBO, placebo;
SITA 100, sitagliptin 100 mg; SU, sulfonylurea

Table 2 Baseline demographic and disease characteristics for the FS-MMTT subpopulations

Characteristic Study 1 Study 2 Study 3

PBO CANA
100

CANA
300

Total PBO CANA
100

CANA
300

Total CANA
300

SITA
100

Total

n 61 64 68 193 53 56 54 163 117 117 234

Sex, n (%)a

Men 29 (48) 19 (30) 33 (49) 81 (42) 30 (57) 28 (50) 26 (48) 84 (52) 66 (56) 64 (55) 130 (56)

Women 32 (53) 45 (70) 35 (52) 112 (58) 23 (43) 28 (50) 28 (52) 79 (49) 51 (44) 53 (45) 104 (44)

Age, years 58±12 56±10 55±12 56±11 56±9 57±11 55±8 56±9 58±9 57±8 57±9

Race, n (%)a

White 49 (80) 46 (72) 56 (82) 151 (78) 43 (81) 51 (91) 42 (78) 136 (83) 79 (68) 80 (68) 159 (68)

Black/African-American 4 (7) 10 (16) 6 (9) 20 (10) 4 (8) 0 6 (11) 10 (6) 20 (17) 15 (13) 35 (15)

Asian 1 (2) 0 1 (2) 2 (1) 1 (2) 1 (2) 0 2 (1) 7 (6) 4 (3) 11 (5)

Otherb 7 (12) 8 (13) 5 (7) 20 (10) 5 (9) 4 (7) 6 (11) 15 (9) 11 (9) 18 (15) 29 (12)

HbA1c, % 7.7±0.9 8.0±0.9 7.9±0.9 7.9±0.9 8.1±0.8 8.2±1.0 8.3±1.1 8.2±1.0 8.0±0.9 8.1±0.9 8.1±0.9

HbA1c, mmol/mol 61±9.8 64±9.8 63±9.8 63±9.8 65±8.7 66±10.9 67±12.0 66±10.9 64±9.8 65±9.8 65±9.8

FPG, mmol/l 9.0±2.1 9.7±2.3 9.3±2.1 9.3±2.2 9.7±2.3 10.0±2.4 9.7±2.4 9.8±2.4 8.8±2.2 8.8±2.4 8.8±2.3

Body weight, kg 93±17 87±20 90±22 90±20 90±22 93±21 92±19 92±21 84±20 88±21 86±21

Waist circumference, cm 110±13 104±13 106±15 107±14 105±15 109±16 108±14 108±15 104±13 106±13 105±13

Duration of diabetes, years 4.4±4.5 5.5±4.3 5.3±5.5 5.1±4.8 10.5±6.7 9.6±6.1 8.9±5.4 9.7±6.1 9.9±6.4 10.1±6.8 10.0±6.6

Data are mean ± SD unless otherwise indicated
a Percentages may not total 100% due to rounding
b Includes American Indian or Alaska Native, Native Hawaiian or other Pacific Islander, multiple, other or not reported

PBO, placebo; CANA 100, canagliflozin 100 mg; CANA 300, canagliflozin 300 mg; SITA 100, sitagliptin 100 mg
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could be consumed without restriction. The entire meal was to
be completed within a 15 min period.

During the FS-MMTT, blood samples were collected for
the measurement of glucose, insulin and C-peptide 15 min

before and immediately prior to the start of the meal, and at 30,
60, 90, 120 and 180 min after the meal. Patients were asked to
empty their bladders immediately prior to collection of the
first blood sample. Urine was then collected over the interval
from 15min before the meal through to 180 min after the meal
for the measurement of UGE. In Study 3, mean plasma
glucose during the 3 h postprandial period (MPG0–3 h) was
calculated as the AUC for the plasma glucose profile (calcu-
lated by the trapezoid rule) divided by the 3 h time interval.

Modelling analysis Beta cell function was assessed from the
FS-MMTT using a model that describes the relationship be-
tween insulin secretion and glucose concentration, and which
has previously been described in detail [19, 20]. The model
expresses insulin secretion (in pmol min−1 m−2) as the sum of
two components. The first of these components consists of a
dose–response function relating the insulin secretion rate and
the absolute glucose concentration at any time point during the
MMTT. Characteristic parameters of the dose–response func-
tion are the mean slope over the observed glucose range,
denoted as beta cell glucose sensitivity, and the insulin secre-
tion rate (ISR) at a fixed glucose level of 9 mmol/l (i.e. ISR at
9 mmol/l glucose). The dose–response function is modulated
by a potentiation factor encompassing several potentiating
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Fig. 2 (a–c) Plasma glucose,
(d–f) C-peptide and (g–i) insulin
concentrations, and (j–l) ISR per
plasma glucose values in Study 1.
Black circles, baseline; white
circles, Week 26. Values are
mean ± SEM for placebo
(a, d, g, j), canagliflozin 100 mg
(b, e, h, k) and canagliflozin
300 mg (c, f, i, l)
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mechanisms (e.g. prolonged exposure to hyperglycaemia,
non-glucose substrates, gastrointestinal hormones and neural
modulation), which is set to be a positive function of time and
is constrained to average unity during the experiment. The
second insulin secretion component, termed the derivative
component, represents the dependence of insulin secretion
on the rate of change of glucose concentration and is deter-
mined by a single parameter, denoted as rate sensitivity, that is
related to early insulin release [21].

The model parameters were estimated from glucose and
C-peptide concentrations by regularised least squares, as previous-
ly described [19]. The regularisation process involves a choice of
smoothing factors. These were selected to obtain glucose and
C-peptide model residuals with SDs close to the expected mea-
surement error (∼1% for glucose, ∼4% for C-peptide). The ISR
was calculated from themodel every 5min. The integral of insulin
secretion during the 3 h MMTT was denoted as total insulin
secretion, and insulin clearance was calculated by dividing total
insulin secretion by plasma insulin AUC. Insulin clearance was
calculated only for participants with at least five measurements of
plasma insulin during the MMTT.

Insulin sensitivity was estimated from the MMTT data
using the oral glucose insulin sensitivity (OGIS) index as

previously described [22, 23]. However, because this index
does not account for the insulin-independent glucose lowering
occurring due to UGE in canagliflozin-treated participants, the
OGIS index will tend to overestimate improvements in insulin
sensitivity in canagliflozin-treated participants. To account for
this, UGE-corrected OGIS values (OGISc) were calculated by
subtracting renal glucose clearance (calculated as UGE divid-
ed by plasma glucose AUC during the MMTT) from the
OGIS value to provide a more appropriate index of insulin
sensitivity for assessing the effects of canagliflozin treatment.

Statistical analyses Results for all model parameters are pre-
sented for all patients in the modified intent-to-treat (mITT)
analysis set (i.e. all randomised patients who received ≥1 dose
of study drug) with MMTT data at baseline and study endpoint.
Statistical analyses for ISR at 9 mmol/l glucose, beta cell
glucose sensitivity, OGIS, UGE, total insulin secretion and
insulin clearance were performed usingANCOVAmodels, with
the model parameter as the response variable, the baseline
parameter value and baseline glycaemic control (binary value
assessing whether baseline HbA1c was <9.0% [75 mmol/mol])
as covariates, and treatment as the experimental factor. The
distribution of values for beta cell glucose sensitivity and the
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Fig. 3 (a–c) Plasma glucose,
(d–f) C-peptide and (g–i) insulin
concentrations, and (j–l) ISR per
plasma glucose values in Study 2.
Black circles, baseline; white
circles, Week 26. Values are
mean ± SEM for placebo
(a, d, g, j), canagliflozin 100 mg
(b, e, h, k) and canagliflozin
300 mg (c, f, i, l)
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OGIS measures were better approximated by a log-normal than
a normal distribution, so analyses of these parameters were
performed using both original and log-transformed data; for
clarity, the results (change in least squares mean [ΔLSM] and
SEM) are presented in the original scale, but statistical signifi-
cance testing was performed using the log-transformed values.
The distribution of values for the rate sensitivity parameter was
highly non-normal, so between-group comparisons were
assessed using Kruskal–Wallis tests. In Study 3, similar
ANCOVA models to those used for ISR at 9 mmol/l glucose
were used for comparison of FPG, MPG0–3 h and peak post-
prandial plasma glucose concentrations. Differences between
treatments were considered statistically significant at p<0.05.

Results

Patient disposition and baseline characteristics Baseline de-
mographic and disease characteristics for patients in the

FS-MMTT subpopulations are summarised in Table 2. The
characteristics of these patients are similar to those observed in
the overall population in each study [15, 16, 18]. The baseline
relationship between ISR and plasma glucose in each of the
three studies is shown in Fig. 1. Consistent with the well
established progressive nature of beta cell failure in type 2
diabetes, baseline beta cell function was better in patients in
Study 1 than in the patients with longer duration of diabetes
evaluated in Studies 2 and 3; this is shown by the steeper slope
for the relationship between ISR and plasma glucose in Study 1
compared with Studies 2 and 3. Within each study, baseline
plasma glucose, insulin and C-peptide profiles, and the corre-
sponding ISR–plasma glucose relationships at baseline were
generally similar between the different treatment groups, with
the exception of the placebo group in Study 1, which had
modestly lower mean plasma glucose concentrations and mod-
estly higher plasma C-peptide concentrations than the two
canagliflozin groups, leading to a shift in the mean relationship
between baseline ISR and plasma glucose concentration in the
placebo compared with the canagliflozin groups (Figs 2, 3, 4).

Effects of canagliflozin treatment on HbA1c, body weight and
waist circumference As previously reported [15, 16, 18], in
each of the three studies canagliflozin treatment reduced
HbA1c, body weight and waist circumference. Greater reduc-
tions were observed for all three of these measures with
canagliflozin treatment than with placebo (Studies 1 and 2)
or sitagliptin (Study 3). The changes in these measures in the
subset of patients with MMTT data (Table 3) were similar to
the changes observed in the complete studies.

Effects of canagliflozin treatment on UGE, fasting and post-
prandial glucose, and insulin and C-peptide In each of the
three studies, canagliflozin treatment increasedUGE (Table 4),
resulting in reduced fasting and postprandial glucose concen-
trations (Figs 2, 3, 4). Despite the decreases in plasma glucose
concentrations observed with canagliflozin treatment,
C-peptide concentrations were generally similar at baseline
and the study endpoint (Week 26 for Studies 1 and 2,Week 52
for Study 3) in canagliflozin-treated patients, whereas in
the same patients plasma insulin concentrations tended
to be modestly lower at the study endpoint relative to
baseline (Figs 2, 3, 4). In the sitagliptin comparator
study (Study 3), greater reductions in fasting and post-
prandial glucose were seen with canagliflozin 300 mg
than with sitagliptin 100 mg (electronic supplementary
material [ESM] Table 1).

Measures of beta cell function and insulin sensitivity In Study 1,
both doses of canagliflozin led to an upward shift in the
relationship between ISR and plasma glucose, as well as an
increased slope (Fig. 2j–l), whereas a slight downward shift
was observed with placebo. The model-assessed parameters
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100 mg (a, c, e, g) and canagliflozin 300 mg (b, d, f, h)

896 Diabetologia (2014) 57:891–901



T
ab

le
3

C
ha
ng
es

in
H
bA

1
c,
bo
dy

w
ei
gh
ta
nd

w
ai
st
ci
rc
um

fe
re
nc
e
in

FS
-M

M
T
T
su
bp
op
ul
at
io
ns

Pa
ra
m
et
er
s

St
ud
y
1

S
tu
dy

2
S
tu
dy

3

PB
O

C
A
N
A
10
0

C
A
N
A
30
0

PB
O

C
A
N
A
10
0

C
A
N
A
30
0

C
A
N
A
30
0

SI
TA

10
0

H
bA

1
c,
n

39
51

50
33

43
36

73
61

B
as
el
in
e,
%

7.
45

(0
.6
9)

7.
92

(0
.8
5)

7.
84

(0
.8
8)

7.
98

(0
.6
6)

8.
00

(0
.8
7)

8.
27

(1
.0
4)

8.
00

(0
.9
0)

7.
97

(0
.8
4)

E
nd
po
in
t,
%

a
7.
55

(1
.0
2)

7.
12

(0
.7
7)

6.
79

(0
.7
2)

7.
78

(0
.9
1)

7.
01

(0
.8
0)

6.
98

(0
.9
7)

6.
85

(0
.6
8)

7.
10

(0
.8
3)

Δ
L
SM

(9
5%

C
I)
,%

b
–

−0
.6
8
(−
0.
98
,−

0.
37
)

−0
.9
9
(−
1.
30
,−

0.
69
)

–
−0

.7
3
(−
1.
12
,−

0.
34
)

−0
.8
6
(−
1.
27
,−

0.
45
)

−0
.2
6
(−
0.
5,
−0

.0
2)

–

B
as
el
in
e,
m
m
ol
/m

ol
57
.9
(7
.6
)

63
.0
(9
.3
)

62
.2
(9
.6
)

63
.7
(7
.2
)

64
.0
(9
.5
)

66
.9
(1
1.
4)

64
.0
(9
.9
)

63
.6
(9
.2
)

E
nd
po
in
t,
m
m
ol
/m

ol
a

59
.0
(1
1.
1)

54
.3
(8
.5
)

50
.7
(7
.9
)

61
.5
(9
.9
)

53
.2
(8
.7
)

52
.7
(1
0.
6)

51
.4
(7
.4
)

54
.1
(9
.0
)

Δ
L
SM

(9
5%

C
I)
,m

m
ol
/m

ol
b

–
−7

.4
(−
10
.7
,−

4.
1)

−1
0.
8
(−
14
.2
,−

7.
6)

–
−8

.0
(−
12
.3
,−

3.
7)

−9
.4
(−
13
.8
,−

4.
9)

−2
.8
(−
5.
5,
−0

.2
)

–

B
od
y
w
ei
gh
t,
n

39
51

50
33

43
36

73
61

B
as
el
in
e,
kg

95
(1
6)

88
(2
0)

89
(2
2)

88
(2
2)

91
(1
9)

94
(1
8)

83
(2
0)

86
(2
1)

E
nd
po
in
t,
kg

a
95

(1
6)

85
(2
1)

85
(2
1)

88
(2
2)

89
(1
9)

91
(1
8)

80
(1
9)

86
(2
0)

Δ
L
SM

(9
5%

C
I)
,%

ch
an
ge

b
–

−3
.6
(−
4.
9,
−2

.3
)

−4
.2
(−
5.
4,
−2

.9
)

–
−1

.9
(−
3.
1,
−0

.6
)

−2
.2
(−
3.
5,
−0

.9
)

−3
.6
(−
4.
9,
−2

.3
)

–

W
ai
st
ci
rc
um

fe
re
nc
e,
n

38
50

49
33

43
36

73
61

B
as
el
in
e,
cm

11
1
(1
2)

10
5
(1
3)

10
6
(1
4)

10
4
(1
5)

10
8
(1
4)

10
8
(1
3)

10
3
(1
3)

10
5
(1
2)

E
nd
po
in
t,
cm

a
11
1
(1
1)

10
3
(1
3)

10
4
(1
4)

10
3
(1
5)

10
4
(1
5)

10
5
(1
2)

10
2
(1
3)

10
5
(1
2)

Δ
L
S
M

(9
5%

C
I)
,c
m

b
–

−1
.5
(−
3.
2,
0.
3)

−1
.8
(−
3.
5,
−0

.0
1)

–
−3

.5
(−
6.
3,
−0

.7
)

−2
.3
(−
5.
2,
0.
6)

−1
.4
(−
2.
9,
0.
02
)

–

D
at
a
ar
e
m
ea
n
(S
D
)
un
le
ss

ot
he
rw

is
e
in
di
ca
te
d

a
W
ee
k
26

fo
r
S
tu
di
es

1
an
d
2;

W
ee
k
52

fo
r
S
tu
dy

3
b
Δ
L
SM

is
th
e
PB

O
-s
ub
tr
ac
te
d
L
SM

ch
an
ge

fr
om

ba
se
lin

e
fo
r
St
ud
ie
s
1
an
d
2,
an
d
th
e
SI
TA

-s
ub
tr
ac
te
d
L
SM

ch
an
ge

in
St
ud
y
3

PB
O
,p
la
ce
bo
;C

A
N
A
10
0,
ca
na
gl
if
lo
zi
n
10
0
m
g;

C
A
N
A
30
0,
ca
na
gl
if
lo
zi
n
30
0
m
g;

S
IT
A
10
0,
si
ta
gl
ip
tin

10
0
m
g

Diabetologia (2014) 57:891–901 897



for ISR at 9 mmol/l glucose and beta cell glucose sensitivity
were significantly increased with both doses of canagliflozin
(Table 5). Changes in the rate sensitivity parameter varied
considerably between patients, with no significant effect of
canagliflozin compared with placebo. Total insulin secretion
during the MMTT was not statistically significantly different
between the canagliflozin and placebo groups. Insulin clear-
ance was increased by approximately 15% with both doses of
canagliflozin compared with placebo (ESM Table 2).

The effects of canagliflozin on beta cell function observed in
Study 2 were generally similar to those seen in Study 1, with
both doses of canagliflozin leading to an upward shift and
steepening of the curve expressing the relationship between
ISR and plasma glucose. No change was observedwith placebo
(Fig. 3j–l). In Study 2, the placebo-subtracted LSM increases in
ISR at 9 mmol/l glucose and in beta cell glucose sensitivity
were smaller than those observed in Study 1 (Table 5), with the
former (ISR at 9 mmol/l) not quite achieving statistical
significance (p=0.10 for canagliflozin 100 mg, p=0.07
for canagliflozin 300 mg). Insulin clearance was increased
with both doses of canagliflozin compared with placebo,
although the increase observed with the 100 mg dose did not
reach statistical significance (p=0.07) (ESM Table 2); the
increase in insulin clearance observed with the 300 mg dose
compared with placebo was approximately 24% (p<0.0001).

In Study 3, treatment with sitagliptin 100 mg and
canagliflozin 300 mg produced similar upward shifts in the
relationship between ISR and plasma glucose (Fig. 4g, h).
Increases from baseline in ISR at 9 mmol/l glucose were
observed with sitagliptin (28 pmol min−1 m−2) and
canagliflozin (38 pmol min−1 m−2; p<0.05 vs baseline for
both) (Table 5), with the increase observed with canagliflozin
being similar to that observed in Study 2. However, the
difference between canagliflozin and sitagliptin was not sta-
tistically significant (p=0.4). Only minimal changes in beta
cell glucose sensitivity were observed in either treatment
group (1–2 pmol min−1 m−2 [mmol/l]−1) in this study, while
no differences in rate sensitivity were observed between

groups. Consistent with the greater reductions in plasma glu-
cose concentrations in the canagliflozin group, total insulin
secretion was reduced with canagliflozin treatment compared
with sitagliptin (p=0.005) (Table 5). Insulin clearance was
increased by approximately 30% with canagliflozin 300 mg,
whereas no change was observed with sitagliptin treatment
(ESM Table 2).

Insulin sensitivity, as assessed by the UGE-corrected OGIS
values, also improved with canagliflozin treatment (Table 5),
with mean values of OGISc increasing by approximately 15%
in canagliflozin-treated patients (although the differences were
not significantly different from placebo in Study 2). As expected,
the correction made to OGIS to account for UGE led to smaller
increases in the index than those obtained using the uncorrected
values.

Discussion

Progressive loss of beta cell function is a hallmark of type 2
diabetes and contributes to the progressive nature of the
disease [1]. Several treatments for type 2 diabetes (e.g. sulfo-
nylureas, meglitinides, glucagon-like peptide-1 [GLP-1] re-
ceptor agonists and dipeptidyl peptidase-4 [DPP-4] inhibitors)
directly stimulate beta cells to increase insulin release. Using
the same methods as in this paper, the DPP-4 inhibitors
vildagliptin and sitagliptin [24, 25] and the GLP-1 receptor
agonists liraglutide and exenatide [26, 27] have all been
previously shown to improve indices of beta cell function.

SGLT2 inhibitors lower plasma glucose concentrations
through a novel mechanism of action that does not directly affect
insulin secretion or insulin sensitivity. SGLT2 inhibition reduces
the renal threshold for glucose excretion, leading to increased
UGE and thereby lowering plasma glucose concentrations [5,
6]. In several preclinical studies, the reversal of hyperglycaemia
by treating hyperglycaemic rodents with SGLT2 inhibitors led to
improved beta cell function and mass [7–10]. The present
studies demonstrate that sustained treatment with the SGLT2

Table 4 UGE measured during the MMTT (0–3 h)

Urine glucose, g Study 1 Study 2 Study 3

PBO CANA 100 CANA 300 PBO CANA 100 CANA 300 CANA 300 SITA 100

Baseline, n 46 46 55 45 52 47 111 107

Mean (SD) 3.9 (7.4) 4.9 (7.0) 4.1 (5.6) 3.0 (4.8) 3.4 (5.6) 3.9 (4.1) 4.4 (5.6) 3.7 (4.2)

Endpoint, n a 34 53 48 28 42 33 73 51

Mean (SD) 3.9 (8.8) 16.4 (15.1) 18.8 (19.3) 4.4 (12.4) 13.6 (14.9) 19.7 (23.3) 21.4 (34.8) 3.2 (4.8)

ΔLSM (95% CI)b – 11.3 (3.7, 19.0) 14.7 (7.2, 22.3) – 9.2 (0.8, 17.6) 15.8 (6.8, 24.7) 17.7 (6.8, 28.6) –

aWeek 26 for Studies 1 and 2; Week 52 for Study 3
bΔLSM is the PBO-subtracted LSM change from baseline (95% CI) for Studies 1 and 2, and the SITA-subtracted LSM change in Study 3

CANA 100, canagliflozin 100 mg; CANA 300, canagliflozin 300 mg; PBO, placebo; SITA 100, sitagliptin 100 mg
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Table 5 Beta cell function and insulin sensitivity parameters

Parameter Study 1 Study 2 Study 3

PBO CANA 100 CANA 300 PBO CANA 100 CANA 300 CANA 300 SITA 100

n 39 51 50 33 43 36 73 61

ISRa

Baseline 200 (143) 150 (170) 143 (109) 106 (59) 109 (94) 122 (91) 111 (59) 115 (62)

Endpointb 175 (117) 237 (171) 232 (124) 114 (63) 163 (62) 172 (144) 152 (66) 146 (87)

ΔLSM (SEM)c – 95 (23) 96 (24) – 40 (25) 47 (26) 38 (8) 28 (9)

p valued – <0.0001 <0.0001 – 0.10 0.07 0.40 –

Beta cell GSe

Baseline 58 (39) 52 (38) 45 (23) 28 (15) 30 (18) 27 (20) 26 (20) 25 (16)

Endpointb 50 (33) 68 (65) 59 (30) 27 (16) 46 (60) 36 (60) 28 (15) 29 (15)

ΔLSM (SEM)c – 23 (9) 18 (9) – 16 (8) 10 (9) 1 (1) 2 (2)

p valued – 0.0007 0.002 – 0.02 0.02 0.95 –

Rate sensitivityf

Baseline 468 (550) 566 (810) 471 (532) 401 (411) 376 (521) 218 (358) 246 (354) 270 (406)

Endpointb 459 (518) 412 (537) 324 (548) 519 (574) 364 (494) 154 (323) 265 (474) 256 (508)

ΔMean (SEM)g −9 (78) −154 (120) −147 (101) 118 (85) −12 (114) −64 (72) 19 (68) −14 (82)
p valued – 0.55 0.17 – 0.20 0.51 0.40 –

Total insulin secretionh

Baseline 58 (25) 52 (19) 54 (19) 43 (18) 45 (20) 42 (21) 42 (16) 43 (17)

Endpointb 53 (20) 50 (19) 52 (19) 40 (16) 45 (21) 41 (20) 38 (15) 44 (14)

ΔLSM (SEM)c – 2.6 (2.4) 2.5 (2.4) – 3.4 (2.6) 1.8 (2.7) −4.8 (1.7) –

p valued – 0.29 0.29 – 0.20 0.51 0.005 –

OGISi

nj 32 46 43 32 37 32 66 57

Baseline 264 (45) 250 (57) 258 (44) 272 (46) 250 (38) 270 (60) 292 (58) 293 (81)

Endpointb 265 (63) 304 (58) 311 (57) 298 (89) 298 (75) 325 (68) 356 (77) 305 (64)

ΔLSM (SEM)c – 50 (12) 52 (12) – 11 (18) 28 (19) 51(12) –

p valued – <0.0001 <0.0001 – 0.46 0.06 <0.0001 –

OGISc
j

nk 32 44 38 32 33 26 64 57

Baseline 263 (45) 244 (58) 258 (45) 269 (48) 249 (40) 269 (65) 286 (59) 290 (82)

Endpointb 263 (63) 279 (60) 289 (61) 297 (89) 286 (81) 304 (69) 331 (77) 302 (65)

ΔLSM (SEM)c – 28 (13) 31 (13) – 0.4 (19) 8 (20) 30 (12) –

p valued – 0.01 0.01 – 0.98 0.54 0.02 –

Data are mean (SD) unless otherwise indicated
a In pmol min−1 m−2 at 9 mmol/l glucose
bWeek 26 for Studies 1 and 2; Week 52 for Study 3
cΔLSM is the PBO-subtracted LSM change from baseline for Studies 1 and 2 and the LSM change from baseline for Study 3. For glucose sensitivity,
ΔLSM values are reported for the untransformed variables, but statistical testing was performed on log-transformed values
d p values vs PBO for Studies 1 and 2, and vs SITA for Study 3
e In pmol min−1 m−2 (mmol/l)−1

f In pmol m−2 (mmol/l)−1

gΔMean is the mean change from baseline
h In pmol/m2

i In ml min−1 m−2 ; not corrected for UGE
j In ml min−1 m−2

k The number of patients with OGIS values is smaller than the number of patients with the other measures, as some patients had insufficient insulin and/or
UGE measurements to perform the OGIS calculations

CANA 100, canagliflozin 100 mg; CANA 300, canagliflozin 300 mg; GS, glucose sensitivity; PBO, placebo; SITA 100, sitagliptin 100 mg
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inhibitor canagliflozin for 6 to 12 months improved fasting and
postprandial measures of beta cell function in humans. The
plasma glucose and HbA1c reductions observed in the FS-
MMTT patient subsets are consistent with the corresponding
reductions observed in the overall populations of the three
studies [15, 16, 18]. In Study 3, the improvements in beta cell
function obtained from the FS-MMTT analysis were similar
with canagliflozin and sitagliptin treatment, even though
sitagliptin has direct effects on beta cells through the elevation
of GLP-1 and glucose-dependent insulinotropic peptide, where-
as canagliflozin is not believed to have any direct effects on beta
cells. Although both treatments caused similar increases in ISR
relative to glucose during the MMTT, the fasting proinsulin:
C-peptide ratio was decreased with canagliflozin treatment com-
pared with sitagliptin treatment [15], suggesting that the treat-
ments have different effects on proinsulin processing [28]. The
improvements in measures of beta cell function observed in
canagliflozin-treated patients are believed to be secondary to
improvements in plasma glucose control, rather than direct
effects of canagliflozin, as no changes in measures of insulin
secretion have been observed in normoglycaemic participants
treated with canagliflozin. For example, no notable changes in
24 h plasma insulin profiles were observed in healthy partici-
pants treatedwith canagliflozin [29] and, in a separate studywith
an MMTT in healthy participants treated with canagliflozin
300 mg or placebo, no differences in the relationship between
ISR and plasma glucose were observed between the
canagliflozin and placebo treatment groups [5].

Canagliflozin treatment generally led to greater reductions
in plasma insulin concentrations compared with C-peptide
concentrations, suggesting that canagliflozin treatment altered
insulin and/or C-peptide clearance, with the calculated in-
creases in insulin clearance with canagliflozin treatment
generally ranging from approximately 15% to 30%. The
ISRs and the corresponding insulin clearance values
calculated in this study were obtained using the assumption
that canagliflozin treatment did not alter C-peptide kinetics.
Because the kidney is the primary site of C-peptide clearance
and canagliflozin acts directly on the kidney, a separate study
was performed to assess whether canagliflozin treatment alters
C-peptide clearance. This study showed that canagliflozin had
only minimal effects on C-peptide clearance (<4%),
confirming that the deconvolution procedure used to estimate
ISR is appropriate in canagliflozin-treated patients [30]. Thus,
it is likely that insulin clearance, which is known to be highly
variable due to large and variable first-pass hepatic extraction
[31], was increased with sustained canagliflozin treatment.

In conclusion, the results from three separate Phase 3 studies
demonstrate that sustained treatment with canagliflozin for 6 to
12 months improves measures of beta cell function. It is now
important to obtain data from longer term studies to assess
whether treatment with canagliflozin can help slow the progres-
sive decline of beta cell function over a longer period.
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