6 research outputs found

    Bactericidal activity of avian complement: a contribution to understand avian-host tropism of Lyme borreliae

    Get PDF
    © The Author(s) 2021. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.Complement has been considered as an important factor impacting the host-pathogen association of spirochetes belonging to the Borrelia burgdorferi sensu lato complex, and may play a role in the spirochete's ecology. Birds are known to be important hosts for ticks and in the maintenance of borreliae. Recent field surveys and laboratory transmission studies indicated that certain avian species act as reservoir hosts for different Borrelia species. Nevertheless, our current understanding of the molecular mechanisms determining host tropism of Borrelia is still in its fledgling stage. Concerning the role of complement in avian-host tropism, only a few bird species and Borrelia species have been analysed so far. Here, we performed in vitro serum bactericidal assays with serum samples collected from four bird species including the European robin Erithacus rubecula, the great tit Parus major, the Eurasian blackbird Turdus merula, and the racing pigeon Columba livia, as well as four Borrelia species (B. afzelii, B. garinii, B. valaisiana, and B. burgdorferi sensu stricto). From July to September 2019, juvenile wild birds were caught using mist nets in Portugal. Racing pigeons were sampled in a loft in October 2019. Independent of the bird species analysed, all Borrelia species displayed an intermediate serum-resistant or serum-resistant phenotype except for B. afzelii challenged with serum from blackbirds. This genospecies was efficiently killed by avian complement, suggesting that blackbirds served as dead-end hosts for B. afzelii. In summary, these findings suggest that complement contributes in the avian-spirochete-tick infection cycle and in Borrelia-host tropism.Open Access funding enabled and organized by Projekt DEAL. This study received financial support from Fundação para a Ciência e a Tecnologia by the strategic program of MARE (MARE—UID/MAR/04292/2020) and the transitory norm contract DL57/2016/CP1370/CT89 to ACN, and the Portuguese National Institute of Health (INSA).info:eu-repo/semantics/publishedVersio

    The population structure of Borrelia lusitaniae Is reflected by a population division of its Ixodes Vector

    Get PDF
    © 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).Populations of vector-borne pathogens are shaped by the distribution and movement of vector and reservoir hosts. To study what impact host and vector association have on tick-borne pathogens, we investigated the population structure of Borrelia lusitaniae using multilocus sequence typing (MLST). Novel sequences were acquired from questing ticks collected in multiple North African and European locations and were supplemented by publicly available sequences at the Borrelia Pubmlst database (accessed on 11 February 2020). Population structure of B. lusitaniae was inferred using clustering and network analyses. Maximum likelihood phylogenies for two molecular tick markers (the mitochondrial 16S rRNA locus and a nuclear locus, Tick-receptor of outer surface protein A, trospA) were used to confirm the morphological species identification of collected ticks. Our results confirmed that B. lusitaniae does indeed form two distinguishable populations: one containing mostly European samples and the other mostly Portuguese and North African samples. Of interest, Portuguese samples clustered largely based on being from north (European) or south (North African) of the river Targus. As two different Ixodes species (i.e., I. ricinus and I. inopinatus) may vector Borrelia in these regions, reference samples were included for I. inopinatus but did not form monophyletic clades in either tree, suggesting some misidentification. Even so, the trospA phylogeny showed a monophyletic clade containing tick samples from Northern Africa and Portugal south of the river Tagus suggesting a population division in Ixodes on this locus. The pattern mirrored the clustering of B. lusitaniae samples, suggesting a potential co-evolution between tick and Borrelia populations that deserve further investigation.This research was financially supported by the Slovak Research and Development Agency (grant number APVV-16-0463), by the Fundação para a Ciência e a Tecnologia by the transitory norm contract DL57/2016/CP1370/CT89 to Ana Cláudia Norte and MARE (MARE-UID/MAR/04292/2020), and by the National Institute of Health Doutor Ricardo Jorge, Lisbon, Portugal. The National Reference Center for Borrelia was supported by the Robert-Koch Institute, Berlin, Germany.info:eu-repo/semantics/publishedVersio

    Host dispersal shapes the population structure of a tick-borne bacterial pathogen

    Get PDF
    Birds are hosts for several zoonotic pathogens. Because of their high mobility, especially of longdistance migrants, birds can disperse these pathogens, affecting their distribution and phylogeography. We focused on Borrelia burgdorferi sensu lato, which includes the causative agents of Lyme borreliosis, as an example for tick-borne pathogens, to address the role of birds as propagation hosts of zoonotic agents at a large geographical scale. We collected ticks from passerine birds in 11 European countries. B. burgdorferi s.l. prevalence in Ixodes spp. was 37% and increased with latitude. The fieldfare Turdus pilaris and the blackbird T. merula carried ticks with the highest Borrelia prevalence (92 and 58%, respectively), whereas robin Erithacus rubecula ticks were the least infected (3.8%). Borrelia garinii was the most prevalent genospecies (61%), followed by B. valaisiana (24%), B. afzelii (9%), B. turdi (5%) and B. lusitaniae (0.5%). A novel Borrelia genospecies "Candidatus Borrelia aligera" was also detected. Multilocus sequence typing (MLST) analysis of B. garinii isolates together with the global collection of B. garinii genotypes obtained from the Borrelia MLST public database revealed that: (a) there was little overlap among genotypes from different continents, (b) there was no geographical structuring within Europe, and (c) there was no evident association pattern detectable among B. garinii genotypes from ticks feeding on birds, questing ticks or human isolates. These findings strengthen the hypothesis that the population structure and evolutionary biology of tick-borne pathogens are shaped by their host associations and the movement patterns of these hosts.Peer reviewe

    Rickettsia conorii Malish and Israeli spotted fever strains causing disease in Portuguese Dogs

    No full text
    Mediterranean spotted fever has the highest incidence in Portugak compared with opther endemic countries. However, few studies have been performed to understand the disease in the dogs, one of the most important host of Rhipicephalus sanguineus ticks, vector of Rickettsia conorii strains. Our main objective was to identify R. conorii as a cause of disease in dogs with clinical suspiction of tick-borne disease

    A comparative test of ixodid tick identification by a network of European researchers

    No full text
    This study reports the results of a comparative test of identification of ticks occurring in Western Europe and Northern Africa. A total of 14 laboratories were voluntarily enrolled in the test. Each participant received between 22 and 25 specimens of adult and nymphal ticks of 11 species: Dermacentor marginatus, D. reticulatus, Haemaphysalis punctata, Hyalomma lusitanicum, Hy. marginatum, Ixodes ricinus, I. hexagonus, Rhipicephalus annulatus, R. bursa, R. rossicus, and/or R. sanguineus s.l. Ticks were morphologically identified by three of the co-authors and the identification confirmed by a fourth co-author who used molecular methods based on several genes. Then ticks were randomly selected and blindly distributed among participants, together with a questionnaire. Only specimens collected while questing and, if possible, in the same survey, were circulated. Because of the random nature of the test, a participant could receive several specimens of the same species. Species in the different genera had variable misidentification rates (MR) of 7% (Derrnacentor), 14% (Ixodes), 19% (Haemapbysalis), 36% (Hyalomma), and 54% (Rhipicephalus). Within genera, the MR was also variable ranging from 5.4% for I. ricinus or 7.4% for D. marginatus or D. reticulatus to 100% for R. rossicus. The test provided a total misidentification rate of 29.6% of the species of ticks. There are no significant differences in MR according to the sex of the tick. Participants were requested to perform a second round of identifications on the same set of ticks, using only purposely prepared keys (without illustrations), circulated to the enrolled participants, including 2 species of the genus Dermacentor, 8 of Haemaphysalis, 10 of Hyalomma, 23 of Ixodes, and 6 of Rhipicephalus. The average MR in the second round was 28%: 0% (Dermacentor), 33% (Haemaphysalis), 30% (Hyalomma) 18% (Ixodes), and 50% (Rhipicephalus). Species which are not reported in the countries of a participating laboratory had always highest MR, i.e. purely Mediterranean species had highest MR by laboratories in Central and Northern Europe. Participants expressed their concerns about a correct identification for almost 50% of the ticks of the genera Hyalomma and Rhipicephalus. The results revealed less than total confidence in identifying the most prominent species of ticks in the Western Palearctic, and underpin the need for reference libraries for specialists involved in this task. Results also showed that a combination of certain genes may adequately identify the target species of ticks

    Host dispersal shapes the population structure of a tick-borne bacterial pathogen

    No full text
    Birds are hosts for several zoonotic pathogens. Because of their high mobility, especially of longdistance migrants, birds can disperse these pathogens, affecting their distribution and phylogeography. We focused on Borrelia burgdorferi sensu lato, which includes the causative agents of Lyme borreliosis, as an example for tick‐borne pathogens, to address the role of birds as propagation hosts of zoonotic agents at a large geographical scale. We collected ticks from passerine birds in 11 European countries. B . burgdorferi s.l. prevalence in Ixodes spp. was 37% and increased with latitude. The fieldfare Turdus pilaris and the blackbird T. merula carried ticks with the highest Borrelia prevalence (92 and 58%, respectively), whereas robin Erithacus rubecula ticks were the least infected (3.8%). Borrelia garinii was the most prevalent genospecies (61%), followed by B. valaisiana (24%), B. afzelii (9%), B. turdi (5%) and B. lusitaniae (0.5%). A novel Borrelia genospecies “Candidatus Borrelia aligera” was also detected. Multilocus sequence typing (MLST ) analysis of B. garinii isolates together with the global collection of B. garinii genotypes obtained from the Borrelia MLST public database revealed that: (a) there was little overlap among genotypes from different continents, (b) there was no geographical structuring within Europe, and (c) there was no evident association pattern detectable among B. garinii genotypes from ticks feeding on birds, questing ticks or human isolates. These findings strengthen the hypothesis that the population structure and evolutionary biology of tick‐borne pathogens are shaped by their host associations and the movement patterns of these hosts
    corecore