7,090 research outputs found

    Diversity of Decline-Rate-Corrected Type Ia Supernova Rise Times: One Mode or Two?

    Get PDF
    B-band light-curve rise times for eight unusually well-observed nearby Type Ia supernovae (SNe) are fitted by a newly developed template-building algorithm, using light-curve functions that are smooth, flexible, and free of potential bias from externally derived templates and other prior assumptions. From the available literature, photometric BVRI data collected over many months, including the earliest points, are reconciled, combined, and fitted to a unique time of explosion for each SN. On average, after they are corrected for light-curve decline rate, three SNe rise in 18.81 +- 0.36 days, while five SNe rise in 16.64 +- 0.21 days. If all eight SNe are sampled from a single parent population (a hypothesis not favored by statistical tests), the rms intrinsic scatter of the decline-rate-corrected SN rise time is 0.96 +0.52 -0.25 days -- a first measurement of this dispersion. The corresponding global mean rise time is 17.44 +- 0.39 days, where the uncertainty is dominated by intrinsic variance. This value is ~2 days shorter than two published averages that nominally are twice as precise, though also based on small samples. When comparing high-z to low-z SN luminosities for determining cosmological parameters, bias can be introduced by use of a light-curve template with an unrealistic rise time. If the period over which light curves are sampled depends on z in a manner typical of current search and measurement strategies, a two-day discrepancy in template rise time can bias the luminosity comparison by ~0.03 magnitudes.Comment: As accepted by The Astrophysical Journal; 15 pages, 6 figures, 2 tables. Explanatory material rearranged and enhanced; Fig. 4 reformatte

    The peculiar extinction law of SN2014J measured with The Hubble Space Telescope

    Get PDF
    The wavelength-dependence of the extinction of Type Ia SN2014J in the nearby galaxy M82 has been measured using UV to near-IR photometry obtained with the Hubble Space Telescope, the Nordic Optical Telescope, and the Mount Abu Infrared Telescope. This is the first time that the reddening of a SN Ia is characterized over the full wavelength range of 0.20.2-22 microns. A total-to-selective extinction, RV3.1R_V\geq3.1, is ruled out with high significance. The best fit at maximum using a Galactic type extinction law yields RV=1.4±0.1R_V = 1.4\pm0.1. The observed reddening of SN2014J is also compatible with a power-law extinction, Aλ/AV=(λ/λV)pA_{\lambda}/A_V = \left( {\lambda}/ {\lambda_V} \right)^{p} as expected from multiple scattering of light, with p=2.1±0.1p=-2.1\pm0.1. After correction for differences in reddening, SN2014J appears to be very similar to SN2011fe over the 14 broad-band filter light curves used in our study.Comment: Accepted for publication in ApJ

    Luminosity distributions of Type Ia Supernovae

    Get PDF
    We have assembled a dataset of 165 low redshift, z<z<0.06, publicly available type Ia supernovae (SNe Ia). We produce maximum light magnitude (MBM_{B} and MVM_{V}) distributions of SNe Ia to explore the diversity of parameter space that they can fill. Before correction for host galaxy extinction we find that the mean MBM_{B} and MVM_{V} of SNe Ia are 18.58±0.07-18.58\pm0.07mag and 18.72±0.05-18.72\pm0.05mag respectively. Host galaxy extinction is corrected using a new method based on the SN spectrum. After correction, the mean values of MBM_{B} and MVM_{V} of SNe Ia are 19.10±0.06-19.10\pm0.06 and 19.10±0.05-19.10\pm0.05mag respectively. After correction for host galaxy extinction, `normal' SNeIa (Δm15(B)<1.6\Delta m_{15}(B)<1.6mag) fill a larger parameter space in the Width-Luminosity Relation (WLR) than previously suggested, and there is evidence for luminous SNe Ia with large Δm15(B)\Delta m_{15}(B). We find a bimodal distribution in Δm15(B)\Delta m_{15}(B), with a pronounced lack of transitional events at Δm15(B)\Delta m_{15}(B)=1.6 mag. We confirm that faster, low-luminosity SNe tend to come from passive galaxies. Dividing the sample by host galaxy type, SNe Ia from star-forming (S-F) galaxies have a mean MB=19.20±0.05M_{B}=-19.20 \pm 0.05 mag, while SNe Ia from passive galaxies have a mean MB=18.57±0.24M_{B}=-18.57 \pm 0.24 mag. Even excluding fast declining SNe, `normal' (MB<18M_{B}<-18 mag) SNe Ia from S-F and passive galaxies are distinct. In the VV-band, there is a difference of 0.4± \pm 0.13 mag between the median (MVM_{V}) values of the `normal' SN Ia population from passive and S-F galaxies. This is consistent with (15±\sim 15 \pm 10)% of `normal' SNe Ia from S-F galaxies coming from an old stellar population

    Spectral Models for Early Time SN 2011fe Observations

    Get PDF
    We use observed UV through near IR spectra to examine whether SN 2011fe can be understood in the framework of Branch-normal SNe Ia and to examine its individual peculiarities. As a benchmark, we use a delayed-detonation model with a progenitor metallicity of Z_solar/20. We study the sensitivity of features to variations in progenitor metallicity, the outer density profile, and the distribution of radioactive nickel. The effect of metallicity variations in the progenitor have a relatively small effect on the synthetic spectra. We also find that the abundance stratification of SN 2011fe resembles closely that of a delayed detonation model with a transition density that has been fit to other Branch-normal Type Ia supernovae. At early times, the model photosphere is formed in material with velocities that are too high, indicating that the photosphere recedes too slowly or that SN 2011fe has a lower specific energy in the outer ~0.1 M_sun than does the model. We discuss several explanations for the discrepancies. Finally, we examine variations in both the spectral energy distribution and in the colors due to variations in the progenitor metallicity, which suggests that colors are only weak indicators for the progenitor metallicity, in the particular explosion model that we have studied. We do find that the flux in the U band is significantly higher at maximum light in the solar metallicity model than in the lower metallicity model and the lower metallicity model much better matches the observed spectrum.Comment: 9 pages, 14 figures, MNRAS, in press, fixed typ

    The Rise Times of High and Low Redshift Type Ia Supernovae are Consistent

    Get PDF
    We present a self-consistent comparison of the rise times for low- and high-redshift Type Ia supernovae. Following previous studies, the early light curve is modeled using a t-squared law, which is then mated with a modified Leibundgut template light curve. The best-fit t-squared law is determined for ensemble samples of low- and high-redshift supernovae by fitting simultaneously for all light curve parameters for all supernovae in each sample. Our method fully accounts for the non-negligible covariance amongst the light curve fitting parameters, which previous analyses have neglected. Contrary to Riess et al. (1999), we find fair to good agreement between the rise times of the low- and high-redshift Type Ia supernovae. The uncertainty in the rise time of the high-redshift Type Ia supernovae is presently quite large (roughly +/- 1.2 days statistical), making any search for evidence of evolution based on a comparison of rise times premature. Furthermore, systematic effects on rise time determinations from the high-redshift observations, due to the form of the late-time light curve and the manner in which the light curves of these supernovae were sampled, can bias the high-redshift rise time determinations by up to +3.6/-1.9 days under extreme situations. The peak brightnesses - used for cosmology - do not suffer any significant bias, nor any significant increase in uncertainty.Comment: 18 pages, 4 figures, Accepted for publication in the Astronomical Journal. Also available at http://www.lbl.gov/~nugent/papers.html Typos were corrected and a few sentences were added for improved clarit

    The Broad Absorption Line Tidal Disruption Event iPTF15af: Optical and Ultraviolet Evolution

    Get PDF
    We present multi-wavelength observations of the tidal disruption event (TDE) iPTF15af, discovered by the intermediate Palomar Transient Factory (iPTF) survey at redshift z=0.07897z=0.07897. The optical and ultraviolet (UV) light curves of the transient show a slow decay over five months, in agreement with previous optically discovered TDEs. It also has a comparable black-body peak luminosity of Lpeak1.5×1044L_{\rm{peak}} \approx 1.5 \times 10^{44} erg/s. The inferred temperature from the optical and UV data shows a value of (3-5) ×104\times 10^4 K. The transient is not detected in X-rays up to LX<3×1042L_X < 3 \times 10^{42}erg/s within the first five months after discovery. The optical spectra exhibit two distinct broad emission lines in the He II region, and at later times also Hα\alpha emission. Additionally, emission from [N III] and [O III] is detected, likely produced by the Bowen fluorescence effect. UV spectra reveal broad emission and absorption lines associated with high-ionization states of N V, C IV, Si IV, and possibly P V. These features, analogous to those of broad absorption line quasars (BAL QSOs), require an absorber with column densities NH>1023N_{\rm{H}} > 10^{23} cm2^{-2}. This optically thick gas would also explain the non-detection in soft X-rays. The profile of the absorption lines with the highest column density material at the largest velocity is opposite that of BAL QSOs. We suggest that radiation pressure generated by the TDE flare at early times could have provided the initial acceleration mechanism for this gas. Spectral UV line monitoring of future TDEs could test this proposal.Comment: 20 pages, 12 figures, published in Ap

    The Nearby Supernova Factory

    Get PDF
    The Nearby Supernova Factory (SNfactory) is an ambitious project to find and study in detail approximately 300 nearby Type Ia supernovae (SNe~Ia) at redshifts 0.03<z<0.08. This program will provide an exceptional data set of well-studied SNe in the nearby smooth Hubble flow that can be used as calibration for the current and future programs designed to use SNe to measure the cosmological parameters. The first key ingredient for this program is a reliable supply of Hubble-flow SNe systematically discovered in unprecedented numbers using the same techniques as those used in distant SNe searches. In 2002, 35 SNe were found using our test-bed pipeline for automated SN search and discovery. The pipeline uses images from the asteroid search conducted by the Near Earth Asteroid Tracking group at JPL. Improvements in our subtraction techniques and analysis have allowed us to increase our effective SN discovery rate to ~12 SNe/month in 2003.Comment: 7 pages, 3 figures to be published in New Astronomy Review
    corecore