186 research outputs found

    Rumor Has It…: Relay Communication of Stress Cues in Plants

    Get PDF
    Recent evidence demonstrates that plants are able not only to perceive and adaptively respond to external information but also to anticipate forthcoming hazards and stresses. Here, we tested the hypothesis that unstressed plants are able to respond to stress cues emitted from their abiotically-stressed neighbors and in turn induce stress responses in additional unstressed plants located further away from the stressed plants. Pisum sativum plants were subjected to drought while neighboring rows of five unstressed plants on both sides, with which they could exchange different cue combinations. On one side, the stressed plant and its unstressed neighbors did not share their rooting volumes (UNSHARED) and thus were limited to shoot communication. On its other side, the stressed plant shared one of its rooting volumes with its nearest unstressed neighbor and all plants shared their rooting volumes with their immediate neighbors (SHARED), allowing both root and shoot communication. Fifteen minutes following drought induction, significant stomatal closure was observed in both the stressed plants and their nearest unstressed SHARED neighbors, and within one hour, all SHARED neighbors closed their stomata. Stomatal closure was not observed in the UNSHARED neighbors. The results demonstrate that unstressed plants are able to perceive and respond to stress cues emitted by the roots of their drought-stressed neighbors and, via ‘relay cuing’, elicit stress responses in further unstressed plants. Further work is underway to study the underlying mechanisms of this new mode of plant communication and its possible adaptive implications for the anticipation of forthcoming abiotic stresses by plants

    The effect of mean and variance in resource supply on survival of annuals from Mediterranean and desert environments

    Full text link
    Resource availability is often characterized by mean annual amounts, while ignoring the spatial variation within habitats and the temporal variation within a year. Yet, temporal and spatial variation may be especially important for identifying the source of stress in low productivity environments such as deserts where resources are often pulsed and resource renewal events are separated by long periods of low resource availability. Therefore, the degree of stress will be determined in part by the length of time between recharge events. Here, we investigated the effect of timing and total amount of water application on two congeneric pairs, each with a population from a low (desert) and a high (Mediterranean) productivity habitat. As expected, highest survival and greatest growth were found at low or intermediate recharge intervals, and the magnitude of response to increases in total seasonal amounts was greater for Mediterranean species than desert species. The species that had greater survival switched in the hierarchy under high total water depending on interval length. These results demonstrate that temporal variation in resource availability can be as important as annual total amounts for plant performance and that response to temporal dynamics can vary between species. This has implications for community-level processes, as competitive hierarchies may switch based on resource dynamics rather than only total availability.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47707/1/442_2003_Article_1435.pd

    Predicting green: really radical (plant) predictive processing

    Get PDF
    In this article we account for the way plants respond to salient features of their environment under the free-energy principle for biological systems. Biological self-organization amounts to the minimization of surprise over time. We posit that any self-organizing system must embody a generative model whose predictions ensure that (expected) free energy is minimized through action. Plants respond in a fast, and yet coordinated manner, to environmental contingencies. They pro-actively sample their local environment to elicit information with an adaptive value. Our main thesis is that plant behaviour takes place by way of a process (active inference) that predicts the environmental sources of sensory stimulation. This principle, we argue, endows plants with a form of perception that underwrites purposeful, anticipatory behaviour. The aim of the article is to assess the prospects of a radical predictive processing story that would follow naturally from the free-energy principle for biological systems; an approach that may ultimately bear upon our understanding of life and cognition more broadly

    Spatial pattern and neighbour effects on Helianthemum squamatum seedlings in a Mediterranean gypsum community

    Get PDF
    Question: Do, in a semi-arid gypsum environment, neighbours condition the spatial patterns of emergence, survival and height of Helianthemum squamatum seedlings ? Location: Vicinity of Chinchón, province of Madrid, Spain (40°11'N, 3° 35'W, 550 m a.s.l.) Methods: We evaluated the effects of neighbours on the survival and growth of naturally emerging Helianthemum seedlings in a semi-arid area during a two-year period. We followed a two-fold approach based on the use of neighbour models for seedling survival and growth and spatial point pattern analyses for seedling emergence, taking into account the germination date. Results: Seedlings appeared clumped in the vicinity of mature Helianthemum individuals. The neighbour models fitted showed that interactions with neighbours were extremely important for the survival and growth of Helianthemum seedlings. These models also suggest that the effects of neighbours on these variables vary with changes in spatial scale and in the abiotic conditions. Some species exerted negative or positive effects on Helianthemum seedlings only at certain spatial scales, and others exerted negative or positive effects at earlier stages of seedling development, but none later and vice versa. Conclusions: We suggest that the observed patterns are mainly influenced by small-scale modifications in soil conditions and microclimate created by neighbours, which change in time and space

    Swarming Behavior in Plant Roots

    Get PDF
    Interactions between individuals that are guided by simple rules can generate swarming behavior. Swarming behavior has been observed in many groups of organisms, including humans, and recent research has revealed that plants also demonstrate social behavior based on mutual interaction with other individuals. However, this behavior has not previously been analyzed in the context of swarming. Here, we show that roots can be influenced by their neighbors to induce a tendency to align the directions of their growth. In the apparently noisy patterns formed by growing roots, episodic alignments are observed as the roots grow close to each other. These events are incompatible with the statistics of purely random growth. We present experimental results and a theoretical model that describes the growth of maize roots in terms of swarming
    corecore