6 research outputs found

    Population heterogeneity and dynamics in starter culture and lag phase adaptation of the spoilage yeast Zygosaccharomyces bailii to weak acid preservatives

    Get PDF
    The food spoilage yeast Zygosaccharomyces bailii shows great resistance to weak-acid preservatives, including sorbic acid (2, 4-hexadienoic acid). That extreme resistance was shown to be due to population heterogeneity, with a small sub-population of cells resistant to a variety of weak acids, probably caused by a lower internal pH reducing the uptake of all weak acids. In the present paper, it was found that resistant cells were extremely rare in exponential cultures, but increased by up to 8000-fold in stationary phase. Inoculation of media containing sorbic acid with a population of Z. bailii cells gave rise to what appeared to be a prolonged lag phase, suggesting adaptation to the conditions before the cells entered the period of exponential growth. However, the apparent lag phase caused by sorbic acid was largely due to the time required for the resistant sub-population to grow to detectable levels. The slow growth rate of the sub-population was identical to that of the final total population. The non-resistant bulk population remained viable for 3. days but had lost viability by 6. days and, during that time, there was no indication of any development of resistance in the bulk population. The sub-population growing in sorbic acid showed very high population diversity in colony size and internal pH. After removal of sorbic acid, the population rapidly reverted back to the normal, largely non-resistant, population distribution. The data presented suggest that a reevaluation of the lag phase in microbial batch culture is required, at least for the resistance of Z. bailii to sorbic acid. Furthermore, the significance of phenotypic diversity and heterogeneity in microbial populations is discussed more broadly with potential relevance to bacterial "persisters", natural selection and evolution. © 2014

    Transcriptional landscape of Aspergillus niger at breaking of conidial dormancy revealed by RNA-sequencing

    Get PDF
    Background Genome-wide analysis was performed to assess the transcriptional landscape of germinating A. niger conidia using both next generation RNA-sequencing and GeneChips. The metabolism of storage compounds during conidial germination was also examined and compared to the transcript levels from associated genes. Results The transcriptome of dormant conidia was shown to be highly differentiated from that of germinating conidia and major changes in response to environmental shift occurred within the first hour of germination. The breaking of dormancy was associated with increased transcript levels of genes involved in the biosynthesis of proteins, RNA turnover and respiratory metabolism. Increased transcript levels of genes involved in metabolism of nitrate at the onset of germination implies its use as a source of nitrogen. The transcriptome of dormant conidia contained a significant component of antisense transcripts that changed during germination. Conclusion Dormant conidia contained transcripts of genes involved in fermentation, gluconeogenesis and the glyoxylate cycle. The presence of such transcripts in dormant conidia may indicate the generation of energy from non-carbohydrate substrates during starvation-induced conidiation or for maintenance purposes during dormancy. The immediate onset of metabolism of internal storage compounds after the onset of germination, and the presence of transcripts of relevant genes, suggest that conidia are primed for the onset of germination. For some genes, antisense transcription is regulated in the transition from resting conidia to fully active germinants

    Extreme osmotolerance and halotolerance in food-relevant yeasts and the role of glycerol-dependent cell individuality

    Get PDF
    Osmotolerance and halotolerance are used to describe resistance to sugars and salt, respectively. Here, a comprehensive screen of more than 600 different yeast isolates revealed that osmosensitive species were equally affected by NaCl and glucose. However, the relative toxicity of salt became increasingly prominent in more osmoresistant species. We confirmed that growth inhibition by glucose in a laboratory strain of Saccharomyces cerevisiae occurred at a lower water activity (Aw) than by salt (NaCl), and pre-growth in high levels of glucose or salt gave enhanced cross-resistance to either. Salt toxicity was largely due to osmotic stress but with an additive enhancement due to effects of the relevant cation. Almost all of the yeast isolates from the screen were also noted to exhibit hetero-resistance to both salt and sugar, whereby high concentrations restricted growth to a small minority of cells within the clonal populations. Rare resistant colonies required growth for up to 28 days to become visible. This cell individuality was more marked with salt than sugar, a possible further reflection of the ion toxicity effect. In both cases, heteroresistance in S. cerevisiae was strikingly dependent on the GPD1 gene product, important for glycerol synthesis. In contrast, a tps1? deletant impaired for trehalose showed altered MIC but no change in heteroresistance. Effects on heteroresistance were evident in chronic (but not acute) salt or glucose stress, particularly relevant to growth on low Aw foods. The study reports diverse osmotolerance and halotolerance phenotypes and heteroresistance across an extensive panel of yeast isolates, and indicates that Gpd1-dependent glycerol synthesis is a key determinant enabling growth of rare yeast subpopulations at low Aw, brought about by glucose and in particular salt

    Metabolic activity in dormant conidia ofAspergillus nigerand developmental changes during conidial outgrowth

    Get PDF
    The early stages of development of Aspergillus niger conidia during outgrowth were explored by combining genome-wide gene expression analysis (RNAseq), proteomics, Warburg manometry and uptake studies. Resting conidia suspended in water were demonstrated for the first time to be metabolically active as low levels of oxygen uptake and the generation of carbon dioxide were detected, suggesting that low-level respiratory metabolism occurs in conidia for maintenance. Upon triggering of spore germination, generation of CO2 increased dramatically. For a short period, which coincided with mobilisation of the intracellular polyol, trehalose, there was no increase in uptake of O2 indicating that trehalose was metabolised by fermentation. Data from genome-wide mRNA profiling showed the presence of transcripts associated with fermentative and respiratory metabolism in resting conidia. Following triggering of conidial outgrowth, there was a clear switch to respiration after 25 min, confirmed by cyanide inhibition. No effect of SHAM, salicylhydroxamic acid, on respiration suggests electron flow via cytochrome c oxidase. Glucose entry into spores was not detectable before 1 h after triggering germination. The impact of sorbic acid on germination was examined and we showed that it inhibits glucose uptake. O2 uptake was also inhibited, delaying the onset of respiration and extending the period of fermentation. In conclusion, we show that conidia suspended in water are not completely dormant and that conidial outgrowth involves fermentative metabolism that precedes respiration
    corecore