290 research outputs found

    On mesogranulation, network formation and supergranulation

    Get PDF
    We present arguments which show that in all likelihood mesogranulation is not a true scale of solar convection but the combination of the effects of both highly energetic granules, which give birth to strong positive divergences (SPDs) among which we find exploders, and averaging effects of data processing. The important role played by SPDs in horizontal velocity fields appears in the spectra of these fields where the scale ∌\sim4 Mm is most energetic; we illustrate the effect of averaging with a one-dimensional toy model which shows how two independent non-moving (but evolving) structures can be transformed into a single moving structure when time and space resolution are degraded. The role of SPDs in the formation of the photospheric network is shown by computing the advection of floating corks by the granular flow. The coincidence of the network bright points distribution and that of the corks is remarkable. We conclude with the possibility that supergranulation is not a proper scale of convection but the result of a large-scale instability of the granular flow, which manifests itself through a correlation of the flows generated by SPDs.Comment: 10 pages, 11 figures, to appear in Astronomy and Astrophysic

    Hydrodynamical simulations of convection-related stellar micro-variability. II. The enigmatic granulation background of the COROT target HD49933

    Full text link
    Local-box hydrodynamical model atmospheres provide statistical information about a star's emergent radiation field which allows one to predict the level of its granulation-related micro-variability. Space-based photometry is now sufficiently accurate to test model predictions. We aim to model the photometric granulation background of HD49933 as well as the Sun, and compare the predictions to the measurements obtained by the COROT and SOHO satellite missions. We construct hydrodynamical model atmospheres representing HD49933 and the Sun, and use a previously developed scaling technique to obtain the observable disk-integrated brightness fluctuations. We further performed exploratory magneto-hydrodynamical simulations to gauge the impact of small scale magnetic fields on the synthetic light-curves. We find that the granulation-related brightness fluctuations depend on metallicity. We obtain a satisfactory correspondence between prediction and observation for the Sun, validating our approach. For HD49933, we arrive at a significant over-estimation by a factor of two to three in total power. Locally generated magnetic fields are unlikely to be responsible, otherwise existing fields would need to be rather strong to sufficiently suppress the granulation signal. Presently suggested updates on the fundamental stellar parameters do not improve the correspondence; however, an ad-hoc increase of the HD49933 surface gravity by about 0.2dex would eliminate most of the discrepancy. We diagnose a puzzling discrepancy between the predicted and observed granulation background in HD49933, with only rather ad-hoc ideas for remedies at hand.Comment: 7 pages, 5 figures, accepted for publication in A&

    Cognitive networks: brains, internet, and civilizations

    Get PDF
    In this short essay, we discuss some basic features of cognitive activity at several different space-time scales: from neural networks in the brain to civilizations. One motivation for such comparative study is its heuristic value. Attempts to better understand the functioning of "wetware" involved in cognitive activities of central nervous system by comparing it with a computing device have a long tradition. We suggest that comparison with Internet might be more adequate. We briefly touch upon such subjects as encoding, compression, and Saussurean trichotomy langue/langage/parole in various environments.Comment: 16 page

    Acoustic Events in the Solar Atmosphere from Hinode/SOT NFI observations

    Full text link
    We investigate the properties of acoustic events (AEs), defined as spatially concentrated and short duration energy flux, in the quiet sun using observations of a 2D field of view (FOV) with high spatial and temporal resolution provided by the Solar Optical Telescope (SOT) onboard \textit{Hinode}. Line profiles of Fe \textsc{i} 557.6 nm were recorded by the Narrow band Filter Imager (NFI) on a 82"×82"82" \times 82" FOV during 75 min with a time step of 28.75 s and 0.08"" pixel size. Vertical velocities were computed at three atmospheric levels (80, 130 and 180 km) using the bisector technique allowing the determination of energy flux in the range 3-10 mHz using two complementary methods (Hilbert transform and Fourier power spectra). Horizontal velocities were computed using local correlation tracking (LCT) of continuum intensities providing divergences. The net energy flux is upward. In the range 3-10 mHz, a full FOV space and time averaged flux of 2700 W m−2^{-2} (lower layer 80-130 km) and 2000 W m−2^{-2} (upper layer 130-180 km) is concentrated in less than 1% of the solar surface in the form of narrow (0.3"") AE. Their total duration (including rise and decay) is of the order of 10310^{3} s. Inside each AE, the mean flux is 1.61051.6 10^{5} W m−2^{-2} (lower layer) and 1.21051.2 10^{5} W m−2^{-2} (upper). Each event carries an average energy (flux integrated over space and time) of 2.510192.5 10^{19} J (lower layer) to 1.910191.9 10^{19} J (upper). More than 10610^{6} events could exist permanently on the Sun, with a birth and decay rate of 3500 s−1^{-1}. Most events occur in intergranular lanes, downward velocity regions, and areas of converging motions.Comment: 18 pages, 10 figure

    High-resolution spectro-polarimetry of a flaring sunspot penumbra

    Full text link
    We present simultaneous photospheric and chromospheric observations of the trailing sunspot in NOAA 10904 during a weak flare eruption (GOES magnitude B7.8), obtained with the Swedish Solar Telescope (SST) in La Palma, Canary Islands. High-resolution \ion{Ca}{ii} HH images show a typical two-ribbon structure that has been hitherto only known for larger flares, and the flare appears in a confined region that is discernible by a bright border. The underlying photosphere shows a disturbed penumbral structure with intersecting branches of penumbral filaments. High-resolution Doppler- and vector-magnetograms exhibit oppositely directed Evershed flows and magnetic field vectors in the individual penumbral branches, resulting in several regions of magnetic azimuth discontinuity and several islands where the vertical magnetic field is reversed. The discontinuity regions are co-spatial with the locations of the onset of the flare ribbons. From the results, we conclude that the confined flare region is detached from the global magnetic field structure by a separatrix marked by the bright border visible in \ion{Ca}{ii} HH. We further conclude that the islands of reversed vertical field appear because of flux emergence and that the strong magnetic shear appearing in the regions of magnetic azimuth discontinuity triggers the flare.Comment: 20 pages + 1 online Figure for A&

    The locus of legitimate interpretation in Big Data sciences : Lessons for computational social science from -omic biology and high-energy physics

    Get PDF
    This paper argues that analyses of the ways in which Big Data has been enacted in other academic disciplines can provide us with concepts that will help understand the application of Big Data to social questions. We use examples drawn from our Science and Technology Studies (STS) analyses of -omic biology and high energy physics to demonstrate the utility of three theoretical concepts: (i) primary and secondary inscriptions, (ii) crafted and found data, and (iii) the locus of legitimate interpretation. These help us to show how the histories, organisational forms, and power dynamics of a field lead to different enactments of big data. The paper suggests that these concepts can be used to help us to understand the ways in which Big Data is being enacted in the domain of the social sciences, and to outline in general terms the ways in which this enactment might be different to that which we have observed in the ‘hard’ sciences. We contend that the locus of legitimate interpretation of Big Data biology and physics is tightly delineated, found within the disciplinary institutions and cultures of these disciplines. We suggest that when using Big Data to make knowledge claims about ‘the social’ the locus of legitimate interpretation is more diffuse, with knowledge claims that are treated as being credible made from other disciplines, or even by those outside academia entirely

    Evolution and Flare Activity of Delta-Sunspots in Cycle 23

    Get PDF
    The emergence and magnetic evolution of solar active regions (ARs) of beta-gamma-delta type, which are known to be highly flare-productive, were studied with the SOHO/MDI data in Cycle 23. We selected 31 ARs that can be observed from their birth phase, as unbiased samples for our study. From the analysis of the magnetic topology (twist and writhe), we obtained the following results. i) Emerging beta-gamma-delta ARs can be classified into three topological types as "quasi-beta", "writhed" and "top-to-top". ii) Among them, the "writhed" and "top-to-top" types tend to show high flare activity. iii) As the signs of twist and writhe agree with each other in most cases of the "writhed" type (12 cases out of 13), we propose a magnetic model in which the emerging flux regions in a beta-gamma-delta AR are not separated but united as a single structure below the solar surface. iv) Almost all the "writhed"-type ARs have downward knotted structures in the mid portion of the magnetic flux tube. This, we believe, is the essential property of beta-gamma-delta ARs. v) The flare activity of beta-gamma-delta ARs is highly correlated not only with the sunspot area but also with the magnetic complexity. vi) We suggest that there is a possible scaling-law between the flare index and the maximum umbral area

    Can we Determine Electric Fields and Poynting Fluxes from Vector Magnetograms and Doppler Measurements?

    Full text link
    The availability of vector magnetogram sequences with sufficient accuracy and cadence to estimate the time derivative of the magnetic field allows us to use Faraday's law to find an approximate solution for the electric field in the photosphere, using a Poloidal-Toroidal Decomposition (PTD) of the magnetic field and its partial time derivative. Without additional information, however, the electric field found from this technique is under-determined -- Faraday's law provides no information about the electric field that can be derived the gradient of a scalar potential. Here, we show how additional information in the form of line-of-sight Doppler flow measurements, and motions transverse to the line-of-sight determined with ad-hoc methods such as local correlation tracking, can be combined with the PTD solutions to provide much more accurate solutions for the solar electric field, and therefore the Poynting flux of electromagnetic energy in the solar photosphere. Reliable, accurate maps of the Poynting flux are essential for quantitative studies of the buildup of magnetic energy before flares and coronal mass ejections.Comment: Solar Physics, in press. 14 pages, 3 figure

    Overseeing the overseers: assessing compliance with municipal intervention rules in South Africa

    Get PDF
    Section 139 of the Constitution of South Africa empowers provinces to intervene into municipalities, an instrument to correct serious failures in local government. This article discusses the policy and legal framework for interventions and assesses whether the constitutional provisions that circumscribe it, are being adhered to. The starting point is that decentralisation, of which this instrument is part, is rules-based and that adherence to the rule of law is critical for its success. By its very nature, intervention represents an intrusion into the institutional integrity of the affected municipality and adherence to the constitutional safeguards surrounding the intervention is therefore critical. The article sets out the constitutional framework for interventions into municipalities which includes oversight roles for the Minister responsible for local government, the National Council of Provinces and the provincial legislature. It combines this with an assessment of 39 interventions that took place between 2008 and 2014. It presents a provincial breakdown and a breakdown of the legal basis of these 39 interventions. It concludes that provinces don’t use the interventions envisaged in Section 139(4) and (5) but instead almost always intervene in terms of Section 139(1) of the Constitution. The interventions are assessed for compliance with constitutional prescripts, such as the need to establish a failure to fulfil an executive obligation, the timely submission of the intervention to the Minister and the NCOP and their timely approval. The article concludes that a significant number of interventions did not comply with the pro- visions pertaining to the timely submission and approval by the Minister and the NCOP. Furthermore, there is a need to accelerate the adoption of the legislation envisaged by Section 139(8) of the Constitution to further regulate interventions
    • 

    corecore