12 research outputs found

    Stand growth and structure of mixed-species and monospecific stands of Scots pine (Pinus sylvestris L.) and oak (Q. robur L., Quercus petraea (Matt.) Liebl.) analysed along a productivity gradient through Europe

    Get PDF
    19 Pág.Past failures of monocultures, caused by wind-throw or insect damages, and ongoing climate change currently strongly stimulate research into mixed-species stands. So far, the focus has mainly been on combinations of species with obvious complementary functional traits. However, for any generalization, a broad overview of the mixing reactions of functionally different tree species in different mixing proportions, patterns and under different site conditions is needed, including assemblages of species with rather similar demands on resources such as light. Here, we studied the growth of Scots pine and oak in mixed versus monospecific stands on 36 triplets located along a productivity gradient across Europe, reaching from Sweden to Spain and from France to Georgia. The set-up represents a wide variation in precipitation (456–1250 mm year−1), mean annual temperature (6.7–11.5 °C) and drought index by de Martonne (21–63 mm °C−1). Stand inventories and increment cores of trees stemming from 40- to 132-year-old, fully stocked stands on 0.04–0.94-ha-sized plots provided insight into how species mixing modifies stand growth and structure compared with neighbouring monospecific stands. On average, the standing stem volume was 436 and 360 m3 ha−1 in the monocultures of Scots pine and oak, respectively, and 418 m3 ha−1 in the mixed stands. The corresponding periodical annual volume increment amounted to 10.5 and 9.1 m3 ha−1 year−1 in the monocultures and 10.5 m3 ha−1 year−1 in the mixed stands. Scots pine showed a 10% larger quadratic mean diameter (p < 0.05), a 7% larger dominant diameter (p < 0.01) and a 9% higher growth of basal area and volume in mixed stands compared with neighbouring monocultures. For Scots pine, the productivity advantages of growing in mixture increased with site index (p < 0.01) and water supply (p < 0.01), while for oak they decreased with site index (p < 0.01). In total, the superior productivity of mixed stands compared to monocultures increased with water supply (p < 0.10). Based on 7843 measured crowns, we found that in mixture both species, but especially oak, had significantly wider crowns (p < 0.001) than in monocultures. On average, we found relatively small effects of species mixing on stand growth and structure. Scots pine benefiting on rich, and oak on poor sites, allows for a mixture that is productive and most likely climate resistant all along a wide ecological gradient. We discuss the potential of this mixture in view of climate change.The authors wish to thank the European Union for funding the project ?Mixed species forest management. Lowering risk, increasing resilience (REFORM)? (#2816ERA02S, PCIN2017-026) under the framework of Sumforest ERA-NET. All contributors thank their national funding institutions to establish, measure and analyse data from the triplets. The first author also thanks the Bayerische Staatsforsten (BaySF) for supporting the establishment of the plots and the Bavarian State Ministry for Nutrition, Agriculture, and Forestry for permanent support of the project W 07 ?Long-term experimental plots for forest growth and yield research? (#7831-22209-2013). The French site (FR-1) belongs to the OPTMix experimental site (https://optmix.irstea.fr), which is supported annually by Ecofor, Allenvi, and the French national research infrastructure ANAEE-F. Research on the Lithuanian triplets was made possible by the national funding institution Research Council of Lithuania (LMTLT), agreement No. S-SUMFOREST-17-1. Thanks are also due to Ulrich Kern for the graphical artwork. Finally, we thank two anonymous reviewers for their constructive criticism.Peer reviewe

    Next generation intelligent environments: ambient adaptive systems

    No full text
    This book covers key topics in the field of intelligent ambient adaptive systems. It focuses on the results worked out within the framework of the ATRACO (Adaptive and TRusted Ambient eCOlogies) project. The theoretical background, the developed prototypes, and the evaluated results form a fertile ground useful for the broad intelligent environments scientific community as well as for industrial interest groups. The new edition provides: Chapter authors comment on their work on ATRACO with final remarks as viewed in retrospective Each chapter has been updated with follow-up work emerging from ATRACO An extensive introduction to state-of-the-art statistical dialog management for intelligent environments Approaches are introduced on how Trust is reflected during the dialog with the system

    Plan, Repair, Execute, Explain — How Planning Helps to Assemble your Home Theater

    No full text
    In various social, work-related, or educational contexts, an increasing demand for intelligent assistance systems can be observed. In this paper, we present a domain-independent approach that combines a number of planning and interaction components to realize advanced user assistance. Based on a hybrid planning formalism, the components provide facilities including the generation, execution, and repair as well as the presentation and explanation of plans. We demonstrate the feasibility of our approach by means of a system that aims to assist users in the assembly of their home theater. An empirical evaluation shows the benefit of such a supportive system, in particular for persons with a lack of domain expertise

    A Planning-Based Assistance System for Setting Up a Home Theater

    No full text
    Modern technical devices are often too complex for many users to be able to use them to their full extent. Based on planning technology, we are able to provide advanced user assistance for operating technical devices. We present a system that assists a human user in setting up a complex home theater consisting of several HiFi devices. For a human user, the task is rather challenging due to a large number of different ports of the devices and the variety of available cables. The system supports the user by giving detailed instructions how to assemble the theater. Its performance is based on advanced user-centered planning capabilities including the generation, repair, and explanation of plans

    Reputation based trust in human-agent teamwork without explicit coordination

    No full text
    Interacting with strangers and agents through computer networks has become a routine aspect of our daily lives. In such environments, reputation plays a critical role in determining our future interactions and satisfaction derived from them. This paper empirically investigates the effects of agent reputation on human trust in and behavior towards "peer" level agent teammates over repeated interactions. We developed a team coordination game, the Game of Trust, in which a human player and an agent player repeatedly cooperate to complete team tasks without prior assignment of sub-tasks. Before the game begins, the agent player is introduced with either positive or negative reputation to the human player. The effects of agent reputation are evaluated by performing an extensive set of controlled experiments with participants recruited from Amazon Mechanical Turk, a crowdsourcing marketplace. We collect both teamwork performance data as well as surveys to gauge participants' trust in their agent teammates. The empirical results show that positive (negative) agent reputation led to greater (lower) human trust in agent teammates. Moreover, the interplay between the game expertise and expectation from agent teammate significantly affected the influence of reputation. These findings enhance our understanding of changes in human trust with respect to agent reputation towards achieving successful human-agent teamwork

    Companion-Technology: Towards User- and Situation-Adaptive Functionality of Technical Systems

    No full text
    Abstract—The properties of multimodality, individuality, adaptability, availability, cooperativeness and trustworthiness are at the focus of the investigation of Companion Systems. In this article, we describe the involved key components of such a system and the way they interact with each other. Along with the article comes a video, in which we demonstrate a fully functional prototypical implementation and explain the involved scientific contributions in a simplified manner. The realized technology considers the entire situation of the user and the environment in current and past states. The gained knowledge reflects the context of use and serves as basis for decision-making in the presented adaptive system

    Croissance et structure des peuplements mixtes et monospécifiques de pin sylvestre (Pinus sylvestris L.) et de chêne sessile (Quercus petraea (Matt.) Liebl.). Analyses le long d'un gradient de productivité en Europe

    No full text
    International audiencePast failures of monocultures, caused by wind-throw or insect damages, and ongoing climate change currently strongly stimulate research into mixed-species stands. So far, the focus has mainly been on combinations of species with obvious complementary functional traits. However, for any generalization, a broad overview of the mixing reactions of functionally different tree species in different mixing proportions, patterns and under different site conditions is needed, including assemblages of species with rather similar demands on resources such as light. Here, we studied the growth of Scots pine and oak in mixed versus monospecific stands on 36 triplets located along a productivity gradient across Europe, reaching from Sweden to Spain and from France to Georgia. The set-up represents a wide variation in precipitation (456-1250 mm year-1), mean annual temperature (6.7-11.5 °C) and drought index by de Martonne (21-63 mm °C-1). Stand inventories and increment cores of trees stemming from 40- to 132-year-old, fully stocked stands on 0.04-0.94-ha-sized plots provided insight into how species mixing modifies stand growth and structure compared with neighbouring monospecific stands. On average, the standing stem volume was 436 and 360 m3 ha-1 in the monocultures of Scots pine and oak, respectively, and 418 m3 ha-1 in the mixed stands. The corresponding periodical annual volume increment amounted to 10.5 and 9.1 m3 ha-1 year-1 in the monocultures and 10.5 m3 ha-1 year-1 in the mixed stands. Scots pine showed a 10% larger quadratic mean diameter (p is smaller than 0.05), a 7% larger dominant diameter (p is smaller than 0.01) and a 9% higher growth of basal area and volume in mixed stands compared with neighbouring monocultures. For Scots pine, the productivity advantages of growing in mixture increased with site index (p is smaller than 0.01) and water supply (p is smaller than 0.01), while for oak they decreased with site index (p is smaller than 0.01). In total, the superior productivity of mixed stands compared to monocultures increased with water supply (p is smaller than 0.10). Based on 7843 measured crowns, we found that in mixture both species, but especially oak, had significantly wider crowns (p is smaller than 0.001) than in monocultures. On average, we found relatively small effects of species mixing on stand growth and structure. Scots pine benefiting on rich, and oak on poor sites, allows for a mixture that is productive and most likely climate resistant all along a wide ecological gradient. We discuss the potential of this mixture in view of climate change
    corecore