50 research outputs found

    First-principles study of phenyl ethylene oligomers as current-switch

    Full text link
    We use a self-consistent method to study the distinct current-switch of 22^{'}-amino-4-ethynylphenyl-4'-ethynylphenyl-5'-nitro-1-benzenethiol, from the first-principles calculations. The numerical results are in accord with the early experiment [Reed et al., Sci. Am. \textbf{282}, 86 (2000)]. To further investigate the transport mechanism, we calculate the switching behavior of p-terphenyl with the rotations of the middle ring as well. We also study the effect of hydrogen atom substituting one ending sulfur atom on the transport and find that the asymmetry of I-V curves appears and the switch effect still lies in both the positive and negative bias range.Comment: 6 pages, 6 figure

    Polarization Induced Switching Effect in Graphene Nanoribbon Edge-Defect Junction

    Full text link
    With nonequilibrium Green's function approach combined with density functional theory, we perform an ab initio calculation to investigate transport properties of graphene nanoribbon junctions self-consistently. Tight-binding approximation is applied to model the zigzag graphene nanoribbon (ZGNR) electrodes, and its validity is confirmed by comparison with GAUSSIAN03 PBC calculation of the same system. The origin of abnormal jump points usually appearing in the transmission spectrum is explained with the detailed tight-binding ZGNR band structure. Transport property of an edge defect ZGNR junction is investigated, and the tunable tunneling current can be sensitively controlled by transverse electric fields.Comment: 18 pages, 8 figure

    Ab initio study of single molecular transistor modulated by gate-bias

    Get PDF
    We use a self-consistent method to study the current of the single molecular transistor modulated by the transverse gate-bias in the level of the first-principles calculations. The numerical results show that both the polyacene-dithiol molecules and the fused-ring oligothiophene molecules are the potential high-frequency molecular transistor controlled by the transverse field. The long molecules of the polyacene-dithiol or the fused-ring thiophene are in favor of realizing the gate-bias controlled molecular transistor. The theoretical results suggest the related experiments.Comment: 14 pages, 7 figure

    Density functional calculations of nanoscale conductance

    Full text link
    Density functional calculations for the electronic conductance of single molecules are now common. We examine the methodology from a rigorous point of view, discussing where it can be expected to work, and where it should fail. When molecules are weakly coupled to leads, local and gradient-corrected approximations fail, as the Kohn-Sham levels are misaligned. In the weak bias regime, XC corrections to the current are missed by the standard methodology. For finite bias, a new methodology for performing calculations can be rigorously derived using an extension of time-dependent current density functional theory from the Schroedinger equation to a Master equation.Comment: topical review, 28 pages, updated version with some revision

    Developments in the negative-U modelling of the cuprate HTSC systems

    Full text link
    The paper deals with the many stands that go into creating the unique and complex nature of the HTSC cuprates above Tc as below. Like its predecessors it treats charge, not spin or lattice, as prime mover, but thus taken in the context of the chemical bonding relevant to these copper oxides. The crucial shell filling, negative-U, double-loading fluctuations possible there require accessing at high valent local environment as prevails within the mixed valent, inhomogeneous two sub-system circumstance of the HTSC materials. Close attention is paid to the recent results from Corson, Demsar, Li, Johnson, Norman, Varma, Gyorffy and colleagues.Comment: 44 pages:200+ references. Submitted to J.Phys.:Condensed Matter, Sept 7 200

    Green electrochemical template synthesis of CoPt nanoparticles with tunable size, composition, and magnetism from microemulsions using an ionic liquid (bmimPF6)

    Get PDF
    Altres ajuts: Substrates have been prepared in IMB-CNM (CSIC),supported by the (CSIC) NGG-258 project.Electrodeposition from microemulsions using ionic liquids is revealed as a green method for synthesizing magnetic alloyed nanoparticles, avoiding the use of aggressive reducing agents. Microemulsions containing droplets of aqueous solution (electrolytic solution containing Pt(IV) and Co(II) ions) in an ionic liquid (bmimPF) define nanoreactors in which the electrochemical reduction takes place. Highly crystalline hcp alloyed CoPt nanoparticles, in the 10-120 nm range with a rather narrow size distribution, have been deposited on a conductive substrate. The relative amount of aqueous solution to ionic liquid determines the size of the nanoreactors, which serve as nanotemplates for the growth of the nanoparticles and hence determine their size and distribution. Further, the stoichiometry (PtCo) of the particles can be tuned by the composition of the electrolytic solution inside the droplets. The control of the size and composition of the particles allows tailoring the room-temperature magnetic behavior of the nanoparticles from superparaparamagnetic to hard magnetic (with a coercivity of H = 4100 Oe) in the as-obtained state. © 2014 American Chemical Society

    Report from the EPAA workshop: In vitro ADME in safety testing used by EPAA industry sectors

    Get PDF
    AbstractThere are now numerous in vitro and in silico ADME alternatives to in vivo assays but how do different industries incorporate them into their decision tree approaches for risk assessment, bearing in mind that the chemicals tested are intended for widely varying purposes? The extent of the use of animal tests is mainly driven by regulations or by the lack of a suitable in vitro model. Therefore, what considerations are needed for alternative models and how can they be improved so that they can be used as part of the risk assessment process? To address these issues, the European Partnership for Alternative Approaches to Animal Testing (EPAA) working group on prioritisation, promotion and implementation of the 3Rs research held a workshop in November, 2008 in Duesseldorf, Germany. Participants included different industry sectors such as pharmaceuticals, cosmetics, industrial- and agro-chemicals. This report describes the outcome of the discussions and recommendations (a) to reduce the number of animals used for determining the ADME properties of chemicals and (b) for considerations and actions regarding in vitro and in silico assays. These included: standardisation and promotion of in vitro assays so that they may become accepted by regulators; increased availability of industry in vivo kinetic data for a central database to increase the power of in silico predictions; expansion of the applicability domains of in vitro and in silico tools (which are not necessarily more applicable or even exclusive to one particular sector) and continued collaborations between regulators, academia and industry. A recommended immediate course of action was to establish an expert panel of users, developers and regulators to define the testing scope of models for different chemical classes. It was agreed by all participants that improvement and harmonization of alternative approaches is needed for all sectors and this will most effectively be achieved by stakeholders from different sectors sharing data

    Lawson Criterion for Ignition Exceeded in an Inertial Fusion Experiment

    Get PDF
    corecore