170 research outputs found

    Selective peripheral denervation for cervical dystonia: long-term follow-up.

    Get PDF
    OBJECTIVE: 61 procedures with selective peripheral denervation for cervical dystonia were retrospectively analysed concerning surgical results, pain, quality of life (QoL) and recurrences. METHODS: The patients were assessed with the Tsui torticollis scale, Visual Analogue Scale (VAS) for pain and Fugl-Meyer scale for QoL. Evaluations were performed preoperatively, early postoperatively, at 6 months, then at a mean of 42 (13–165) months. All patients underwent electromyogram at baseline, which was repeated in cases who presented with recurrence of symptoms after surgery. RESULTS: Six months of follow-up was available for 55 (90%) of the procedures and late follow-up for 34 (56%). The mean score of the Tsui scale was 10 preoperatively. It improved to 4.5 (p<0.001) at 6 months, and 5.3 (p<0.001) at late follow-up. VAS for pain improved from 6.5 preoperatively to 4.2 (p<0.001) at 6 months and 4 (p<0.01) at late follow-up. The Fugl-Meyer score for QoL improved from 43.3 to 46.6 (p<0.05) at 6 months, and to 51.1 (p<0.05) at late follow-up. Major reinnervation and/or change in the dystonic pattern occurred following 29% of the procedures, and led in 26% of patients to reoperation with either additional denervation or pallidal stimulation. CONCLUSIONS: Selective peripheral denervation remains a surgical option in the treatment of cervical dystonia when conservative measures fail. Although the majority of patients experience a significant relief of symptoms, there is a substantial risk of reinnervation and/or change in the pattern of the cervical dystonia

    The Disk Population of the Chamaeleon I Star-Forming Region

    Full text link
    We present a census of circumstellar disks in the Chamaeleon I star-forming region. Using the Infrared Array Camera and the Multiband Imaging Photometer onboard the Spitzer Space Telescope, we have obtained images of Chamaeleon I at 3.6, 4.5, 5.8, 8.0, and 24 um. To search for new disk-bearing members of the cluster, we have performed spectroscopy on objects that have red colors in these data. Through this work, we have discovered four new members of Chamaeleon I with spectral types of M4, M6, M7.5, and L0. The first three objects are highly embedded (A_J~5) and reside near known protostars, indicating that they may be among the youngest low-mass sources in the cluster (<1 Myr). The L0 source is the coolest known member of Chamaeleon I. Its luminosity implies a mass of 0.004-0.01 M_sun, making it the least massive brown dwarf for which a circumstellar disk has been reliably detected. To characterize the disk population in Chamaeleon I, we have classified the infrared spectral energy distributions of the 203 known members that are encompassed by the Spitzer images. Through these classifications, we find that the disk fraction in Chamaeleon I is roughly constant at ~50% from 0.01 to 0.3 M_sun. These data are similar to the disk fraction of IC 348, which is a denser cluster at the same age as Chamaeleon I. However, the disk fraction at M>1 M_sun is significantly higher in Chamaeleon I than in IC 348 (65% vs. 20%), indicating longer disk lifetimes in Chamaeleon I for this mass range. Thus, low-density star-forming regions like Chamaeleon I may offer more time for planet formation around solar-type stars than denser clusters

    ISOCAM observations of the rho Ophiuchi cloud: Luminosity and mass functions of the pre-main sequence embedded cluster

    Get PDF
    We present the results of the first extensive mid-infrared (IR) imaging survey of the rho Ophiuchi embedded cluster, performed with the ISOCAM camera on board the ISO satellite. The main molecular cloud L1688, as well as L1689N and L1689S, have been completely surveyed for point sources at 6.7 and 14.3 micron. A total of 425 sources are detected including 16 Class I, 123 Class II, and 77 Class III young stellar objects (YSOs). Essentially all of the mid-IR sources coincide with near-IR sources, but a large proportion of them are recognized for the first time as YSOs. Our dual-wavelength survey allows us to identify essentially all the YSOs with IR excess in the embedded cluster down to Fnu ~ 10 - 15 mJy. It more than doubles the known population of Class II YSOs and represents the most complete census to date of newly formed stars in the rho Ophiuchi central region. The stellar luminosity function of the complete sample of Class II YSOs is derived with a good accuracy down to L= 0.03 Lsun. A modeling of this lumino- sity function, using available pre-main sequence tracks and plausible star for- mation histories, allows us to derive the mass distribution of the Class II YSOs which arguably reflects the IMF of the embedded cluster. We estimate that the IMF in rho Ophiuchi is well described by a two-component power law with a low- mass index of -0.35+/-0.25, a high-mass index of -1.7 (to be compared with the Salpeter value of -1.35), and a break occurring at M = 0.55+/-0.25 Msun. This IMF is flat with no evidence for a low-mass cutoff down to at least 0.06 Msun.Comment: A&A Document Class -- version 5.01, 27 pages, 10 figures v2: typos added including few changes in source numberin

    ISOCAM observations of the L1551 star formation region

    Get PDF
    The results of a deep mid-IR ISOCAM survey of the L1551 dark molecular cloud are presented. The aim of this survey is a search for new YSO (Young Stellar Object) candidates, using two broad-band filters centred at 6.7 and 14.3 micron. Although two regions close to the centre of L1551 had to be avoided due to saturation problems, 96 sources were detected in total (76 sources at 6.7 micron and 44 sources at 14.3 micron). Using the 24 sources detected in both filters, 14 were found to have intrinsic mid-IR excess at 14.3 micron and were therefore classified as YSO candidates. Using additional observations in B, V, I, J, H and K obtained from the ground, most candidates detected at these wavelengths were confirmed to have mid-IR excess at 6.7 micron as well, and three additional YSO candidates were found. Prior to this survey only three YSOs were known in the observed region (avoiding L1551 IRS5/NE and HL/XZ Tau). This survey reveals 15 new YSO candidates, although several of these are uncertain due to their extended nature either in the mid-IR or in the optical/near-IR observations. Two of the sources with mid-IR excess are previously known YSOs, one is a brown dwarf MHO 5 and the other is the well known T Tauri star HH30, consisting of an outflow and an optically thick disk seen edge on.Comment: 14 Pages, 8 Figure

    Rules, Norms and Practices – A Comparative Study Exploring Disposal Practices and Facilities in Northern Europe

    Get PDF
    We identify and analyse practices and management regimes around burial and handling of ashes across eight case study towns within six Northern European countries. We analyse management of cemeteries and crematoria gardens, majority practices and provision for minority communities, including various burial types, cremated remains, the re-use of graves, and costs for interments. Comparative data is drawn from analysis of national and local regulations, interviews with stakeholders, and observations at cemeteries and crematoria gardens. The findings show significant variation in national and local regulations and practices for burial and cremation particularly around the re-use of graves, handling of ashes and costs for grave space and cremation. We identify the opportunities and constraints of these variations in terms of accessibility, diversity and equality; and argue for national directions to avoid unequal treatment within nations. Furthermore, we stress the importance of a liberal and inclusive management of European cemeteries and crematoria gardens

    Submillimeter Emission from Water in the W3 Region

    Full text link
    We have mapped the submillimeter emission from the 1(10)-1(01) transition of ortho-water in the W3 star-forming region. A 5'x5' map of the W3 IRS4 and W3 IRS5 region reveals strong water lines at half the positions in the map. The relative strength of the Odin lines compared to previous observations by SWAS suggests that we are seeing water emission from an extended region. Across much of the map the lines are double-peaked, with an absorption feature at -39 km/s; however, some positions in the map show a single strong line at -43 km/s. We interpret the double-peaked lines as arising from optically thick, self-absorbed water emission near the W3 IRS5, while the narrower blue-shifted lines originate in emission near W3 IRS4. In this model, the unusual appearance of the spectral lines across the map results from a coincidental agreement in velocity between the emission near W3 IRS4 and the blue peak of the more complex lines near W3 IRS5. The strength of the water lines near W3 IRS4 suggests we may be seeing water emission enhanced in a photon-dominated region.Comment: Accepted to A&A Letters as part of the special Odin issue; 4 page

    Envelope structure of deeply embedded young stellar objects in the Serpens Molecular Cloud

    Get PDF
    Aperture synthesis and single-dish (sub) millimeter molecular lines and continuum observations reveal in great detail the envelope structure of deeply embedded young stellar objects (SMM1, SMM2, SMM3, SMM4) in the densely star-forming Serpens Molecular Cloud. Resolved millimeter continuum emission constrains the density structure to a radial power law with index -2.0 +/- 0.5, and envelope masses of 8.7, 3.0, and 5.3 M_sol for SMM1, SMM3, and SMM4. The core SMM2 does not seem to have a central condensation and may not have formed a star yet. The molecular line observations can be described by the same envelope model, if an additional, small amount of warm (100 K) material is included. This probably corresponds to the inner few hundred AU of the envelope were the temperature is high. In the interferometer beam, the molecular lines reveal the inner regions of the envelopes, as well as interaction of the outflow with the surrounding envelope. Bright HCO+ and HCN emission outlines the cavities, while SiO and SO trace the direct impact of the outflow on ambient gas. Taken together, these observations provide a first comprehensive view of the physical and chemical structure of the envelopes of deeply embedded young stellar objects in a clustered environment on scales between 1000 and 10,000 AU.Comment: 46 pages, incl. 12 postscript figures, uses ApJ latex and psfig macro

    The young stellar population in the Serpens Cloud Core: An ISOCAM survey

    Get PDF
    We present results from an ISOCAM survey in the two broad band filters LW2 (5-8.5 mu) and LW3 (12-18 mu) of a 0.13 square degree coverage of the Serpens Main Cloud Core. A total of 392 sources were detected in the 6.7 mu band and 139 in the 14.3 mu band to a limiting sensitivity of ~ 2 mJy. Only about 50% of the mid-IR excess sources show excesses in the near-IR J-H/H-K diagram. In the central Cloud Core the Class I/Class II number ratio is 19/18, i.e. about 10 times larger than in other young embedded clusters such as rho Ophiuchi or Chamaeleon. The mid-IR fluxes of the Class I and flat-spectrum sources are found to be on the average larger than those of Class II sources. Stellar luminosities are estimated for the Class II sample, and its luminosity function is compatible with a coeval population of about 2 Myr which follows a three segment power-law IMF. For this age about 20% of the Class IIs are found to be young brown dwarf candidates. The YSOs are in general strongly clustered, the Class I sources more than the Class II sources, and there is an indication of sub-clustering. The sub-clustering of the protostar candidates has a spatial scale of 0.12 pc. These sub-clusters are found along the NW-SE oriented ridge and in very good agreement with the location of dense cores traced by millimeter data. The smallest clustering scale for the Class II sources is about 0.25 pc, similar to what was found for rho Ophiuchi. Our data show evidence that star formation in Serpens has proceeded in several phases, and that a ``microburst'' of star formation has taken place very recently, probably within the last 10^5 yrs.Comment: 25 pages, 14 figures, accepted by A&A March 18th, see also http://www.not.iac.es/~amanda

    A Census of the Chamaeleon I Star-Forming Region

    Full text link
    Optical spectroscopy has been obtained for 179 objects that have been previously identified as possible members of the cluster, that lack either accurate spectral types or clear evidence of membership, and that are optically visible (I<18). I have used these spectroscopic data and all other available constraints to evaluate the spectral classifications and membership status of a total sample of 288 candidate members of Chamaeleon I that have appeared in published studies of the cluster. The latest census of Chamaeleon I now contains 158 members, 8 of which are later than M6 and thus are likely to be brown dwarfs. I find that many of the objects identified as members of Chamaeleon I in recent surveys are actually field stars. Meanwhile, 7 of 9 candidates discovered by Carpenter and coworkers are confirmed as members, one of which is the coolest known member of Chamaeleon I at a spectral type of M8 (~0.03 M_sun). I have estimated extinctions, luminosities, and effective temperatures for the members and used these data to construct an H-R diagram for the cluster. Chamaeleon I has a median age of ~2 Myr according to evolutionary models, and hence is similar in age to IC 348 and is slightly older than Taurus (~1 Myr). The measurement of an IMF for Chamaeleon I from this census is not possible because of the disparate methods with which the known members were originally selected, and must await an unbiased, magnitude-limited survey of the cluster.Comment: 59 pages, 22 figure
    corecore