126 research outputs found

    Digitalisierung als Störung?

    Get PDF
    Asymmetrische Praktiken der schulischen Kommunikation werden durch den Einsatz etwa von Tablets, die digitales Lehrmaterial beinhalten, neu strukturiert. In unserer empirisch-ethnografischen Studie von digital vermitteltem Religionsunterricht via Tablets werden Episoden sichtbar, in denen die SchĂŒler:innenschaft zumindest zeitweise zur Lehrkraft symmetrisiert wird. Lehrpersonen reagieren hierauf mit einer verĂ€nderten Selbstbeschreibung von Rollenkonstellationen zwischen sich sowie den SchĂŒler:innen. Die Umsetzung der digitalen Unterrichtssituation verlĂ€uft allerdings nicht reibungslos: Dabei zeigt sich, dass die herkömmliche Unterrichtssituation derart strukturiert ist, dass sie den Einsatz digitaler Medien zunĂ€chst eher behindert als befördert. Wir kommen deshalb in unserer empirisch-qualitativen Analyse auch zu dem Schluss: Es ist der (asymmetrisch organisierte) Unterricht, der den reibungsfreien Vollzug digitaler Medien stört

    Economic growth, rural assets and prosperity: exploring the implications of a 20-year record of asset growth in Tanzania

    Get PDF
    Measures of poverty based on consumption suggest that recent economic growth in many African countries has not been inclusive, particularly in rural areas. We argue that measures of poverty using assets may provide a different picture. We present data based on recent re-surveys of Tanzanian households first visited in the early 1990s. These demonstrate a marked increase in prosperity from high levels of poverty. It does not, however, follow that these improvements derive from GDP growth. We consider the implications of this research for further explorations of the relationship between economic growth and agricultural policy in rural areas

    ElecSim: Monte-Carlo Open-Source Agent-Based Model to Inform Policy for Long-Term Electricity Planning

    Full text link
    Due to the threat of climate change, a transition from a fossil-fuel based system to one based on zero-carbon is required. However, this is not as simple as instantaneously closing down all fossil fuel energy generation and replacing them with renewable sources -- careful decisions need to be taken to ensure rapid but stable progress. To aid decision makers, we present a new tool, ElecSim, which is an open-sourced agent-based modelling framework used to examine the effect of policy on long-term investment decisions in electricity generation. ElecSim allows non-experts to rapidly prototype new ideas. Different techniques to model long-term electricity decisions are reviewed and used to motivate why agent-based models will become an important strategic tool for policy. We motivate why an open-source toolkit is required for long-term electricity planning. Actual electricity prices are compared with our model and we demonstrate that the use of a Monte-Carlo simulation in the system improves performance by 52.5%52.5\%. Further, using ElecSim we demonstrate the effect of a carbon tax to encourage a low-carbon electricity supply. We show how a {\pounds}40 ($50\$50) per tonne of CO2 emitted would lead to 70% renewable electricity by 2050.Comment: e-Energy '19 Proceedings of the Tenth ACM International Conference on Future Energy System

    The XMM Cluster Survey: Forecasting cosmological and cluster scaling-relation parameter constraints

    Get PDF
    We forecast the constraints on the values of sigma_8, Omega_m, and cluster scaling relation parameters which we expect to obtain from the XMM Cluster Survey (XCS). We assume a flat Lambda-CDM Universe and perform a Monte Carlo Markov Chain analysis of the evolution of the number density of galaxy clusters that takes into account a detailed simulated selection function. Comparing our current observed number of clusters shows good agreement with predictions. We determine the expected degradation of the constraints as a result of self-calibrating the luminosity-temperature relation (with scatter), including temperature measurement errors, and relying on photometric methods for the estimation of galaxy cluster redshifts. We examine the effects of systematic errors in scaling relation and measurement error assumptions. Using only (T,z) self-calibration, we expect to measure Omega_m to +-0.03 (and Omega_Lambda to the same accuracy assuming flatness), and sigma_8 to +-0.05, also constraining the normalization and slope of the luminosity-temperature relation to +-6 and +-13 per cent (at 1sigma) respectively in the process. Self-calibration fails to jointly constrain the scatter and redshift evolution of the luminosity-temperature relation significantly. Additional archival and/or follow-up data will improve on this. We do not expect measurement errors or imperfect knowledge of their distribution to degrade constraints significantly. Scaling-relation systematics can easily lead to cosmological constraints 2sigma or more away from the fiducial model. Our treatment is the first exact treatment to this level of detail, and introduces a new `smoothed ML' estimate of expected constraints.Comment: 28 pages, 17 figures. Revised version, as accepted for publication in MNRAS. High-resolution figures available at http://xcs-home.org (under "Publications"

    Astrophysical Tests of Dark Matter with Maunakea Spectroscopic Explorer

    Get PDF
    We discuss how astrophysical observations with the Maunakea Spectroscopic Explorer (MSE), a high-multiplexity (about 4300 fibers), wide field-of-view (1.5 square degree), large telescope aperture (11.25 m) facility, can probe the particle nature of dark matter. MSE will conduct a suite of surveys that will provide critical input for determinations of the mass function, phase-space distribution, and internal density profiles of dark matter halos across all mass scales. N-body and hydrodynamical simulations of cold, warm, fuzzy and self-interacting dark matter suggest that non-trivial dynamics in the dark sector could have left an imprint on structure formation. Analysed within these frameworks, the extensive and unprecedented datasets produced by MSE will be used to search for deviations away from cold and collisionless dark matter model. MSE will provide an improved estimate of the local density of dark matter, critical for direct detection experiments, and will improve estimates of the J-factor for indirect searches through self-annihilation or decay into Standard Model particles. MSE will determine the impact of low mass substructures on the dynamics of Milky Way stellar streams in velocity space, and will allow for estimates of the density profiles of the dark matter halos of Milky Way dwarf galaxies using more than an order of magnitude more tracers. In the low redshift Universe, MSE will provide critical redshifts to pin down the luminosity functions of vast numbers of satellite systems, and MSE will be an essential component of future strong lensing measurements to constrain the halo mass function. Across nearly all mass scales, the improvements offered by MSE, in comparison to other facilities, are such that the relevant analyses are limited by systematics rather than statistics.Comment: 44 pages, 19 figures. To appear as a chapter for "The Detailed Science Case for the Maunakea Spectroscopic Explorer, 2019

    Astro2020 Must Issue Actionable Recommendations Regarding Diversity, Inclusion, and Harassment

    Get PDF
    The 2010 Decadal survey failed to issue any recommendations on diversity and inclusion.Astro2020 cannot make the same mistake. Findings can be ignored by funding agencies;recommendations cannot. In the past decade, multiple groups have assembled detailed actionplans to fix a broken climate within our profession. Astro2020 should play a key role, bysynthesizing this work to produce actionable recommendations to support diversity andinclusion and stop harassment within our profession

    Redshift distributions of galaxies in the Dark Energy Survey Science Verification shear catalogue and implications for weak lensing

    Get PDF
    We present photometric redshift estimates for galaxies used in the weak lensing analysis of the Dark Energy Survey Science Verification (DES SV) data. Four model- or machine learning-based photometric redshift methods—ANNZ2, BPZ calibrated against BCC-Ufig simulations, SKYNET, and TPZ—are analyzed. For training, calibration, and testing of these methods, we construct a catalogue of spectroscopically confirmed galaxies matched against DES SV data. The performance of the methods is evaluated against the matched spectroscopic catalogue, focusing on metrics relevant for weak lensing analyses, with additional validation against COSMOS photo-z’s. From the galaxies in the DES SV shear catalogue, which have mean redshift 0.72 0.01 over the range 0.3 < z < 1.3, we construct three tomographic bins with means of z ÂŒ f0.45; 0.67; 1.00g. These bins each have systematic uncertainties ÎŽz â‰Č 0.05 in the mean of the fiducial SKYNET photo-z nĂ°zÞ. We propagate the errors in the redshift distributions through to their impact on cosmological parameters estimated with cosmic shear, and find that they cause shifts in the value of σ8 of approximately 3%. This shift is within the one sigma statistical errors on σ8 for the DES SV shear catalogue. We further study the potential impact of systematic differences on the critical surface density, ÎŁcrit, finding levels of bias safely less than the statistical power of DES SV data. We recommend a final Gaussian prior for the photo-z bias in the mean of nĂ°zÞ of width 0.05 for each of the three tomographic bins, and show that this is a sufficient bias model for the corresponding cosmology analysis
    • 

    corecore