872 research outputs found

    Mobility Improvements After a High-cadence Dynamic Cycling Intervention in an Individual with Motor Neuron Disease: A Case Study

    Get PDF
    International Journal of Exercise Science 14(3): 791-801, 2021. Previous exercise studies in individuals with motor neuron disease have shown some positive benefits but the stress of regular exercise could result in overuse weakness in this population. The purpose of this case study is to determine the efficacy, and tolerability of a high-cadence dynamic cycling intervention in an individual with motor neuron disease. A 67-year-old male with significant lower extremity weakness and a diagnosis of idiopathic motor neuron disease completed six 30-minute sessions of high cadence dynamic cycling over a two-week period using a custom-built motorized ergometer with the motor speed set at 80 revolutions per minute. This intervention resulted in an 80.4 m increase in walking distance during the six-minute walk test (21% increase), with a lower rating of perceived exertion than at baseline. Amyotrophic Lateral Sclerosis Functional Rating Scale- Revised scores improved slightly (2.4%) suggesting that the intervention was tolerated, and it did not compromise the participant’s physical function. These data show that this intervention can improve mobility, is well-tolerated and minimizes the risk of overuse weakness in an individual with motor neuron disease

    The OSCAR-MP Consensus Criteria for Quality Assessment of Retinal Optical Coherence Tomography Angiography

    Get PDF
    Consensus; Angiography; RetinaConsenso; AngiografĂ­a; RetinaConsens; Angiografia; RetinaBackground and Objectives Optical coherence tomography angiography (OCTA) is a noninvasive high-resolution imaging technique for assessing the retinal vasculature and is increasingly used in various ophthalmologic, neuro-ophthalmologic, and neurologic diseases. To date, there are no validated consensus criteria for quality control (QC) of OCTA. Our study aimed to develop criteria for OCTA quality assessment. Methods To establish criteria through (1) extensive literature review on OCTA artifacts and image quality to generate standardized and easy-to-apply OCTA QC criteria, (2) application of OCTA QC criteria to evaluate interrater agreement, (3) identification of reasons for interrater disagreement, revision of OCTA QC criteria, development of OCTA QC scoring guide and training set, and (4) validation of QC criteria in an international, interdisciplinary multicenter study. Results We identified 7 major aspects that affect OCTA quality: (O) obvious problems, (S) signal strength, (C) centration, (A) algorithm failure, (R) retinal pathology, (M) motion artifacts, and (P) projection artifacts. Seven independent raters applied the OSCAR-MP criteria to a set of 40 OCTA scans from people with MS, Sjogren syndrome, and uveitis and healthy individuals. The interrater kappa was substantial (Îș 0.67). Projection artifacts were the main reason for interrater disagreement. Because artifacts can affect only parts of OCTA images, we agreed that prior definition of a specific region of interest (ROI) is crucial for subsequent OCTA quality assessment. To enhance artifact recognition and interrater agreement on reduced image quality, we designed a scoring guide and OCTA training set. Using these educational tools, 23 raters from 14 different centers reached an almost perfect agreement (Îș 0.92) for the rejection of poor-quality OCTA images using the OSCAR-MP criteria. Discussion We propose a 3-step approach for standardized quality control: (1) To define a specific ROI, (2) to assess the occurrence of OCTA artifacts according to the OSCAR-MP criteria, and (3) to evaluate OCTA quality based on the occurrence of different artifacts within the ROI. OSCAR-MP OCTA QC criteria achieved high interrater agreement in an international multicenter study and is a promising QC protocol for application in the context of future clinical trials and studies.R. Wicklein received an intramural research grant from the Technical University of Munich, School of Medicine, and was supported by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany's Excellence Strategy within the framework of the Munich Cluster for Systems Neurology (EXC-2145 - SyNergy ID 390857198). C. Yam's PhD fellowship is funded by the UCL Queen Square Institute of Neurology and Cleveland Clinic London PhD Neuroscience Fellowship. C. Noll received a research scholarship from the GemeinnĂŒtzige Hertie Foundation. L. Aly received travel and research support by Novartis. N. Banze received no funding. E. Feodora Romahn received no funding. E. Wolf received no funding. Bernhard Hemmer received funding for the study by the European Union's Horizon 2020 Research and Innovation Program [grant MultipleMS, EU RIA 733161] and the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany's Excellence Strategy within the framework of the Munich Cluster for Systems Neurology [EXC 2145 SyNergy - ID 390857198]. F.C. Oertel received research support by the National MS Society, American Academy of Neurology and Hertie foundation, all outside of the submitted work. H.G. Zimmermann received intramural funding from the Berlin Center for Translational Vascular Biomedicine (VasBioBerlin). P. Albrecht received no funding. M. Ringelstein received no funding. C. Baumann has no financial disclosures and no conflicting relationship. N. Feucht received no funding. J. Penkava received no funding. J. Havla reports grants from the Friedrich-Baur-Stiftung, Merck, and Horizon. C. Mardin is a medical advisor to Heidelberg Engineering, Heidelberg, Germany, receives lecture honorarium by Heidelberg Engineering, Bayer AG, Leverkusen, Germany, and is partially funded by Federal Ministry of Education and Research and Bavarian Ministry of Health. J.A. Gernert received a research grant from the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation; SFB/TRR 274, ID 408885537). E. Vasileiou did not receive any funding. A. van der Walt did not receive any funding. O. Al-Louzi did not receive any funding. S. Cabello did not receive any funding. A. Vidal-Jordana has received support for contracts Juan Rodes (JR16/00024) and from Fondo de InvestigaciĂłn en Salud (PI17/02162 and PI22/01589) from Instituto de Salud Carlos III, Spain. J. KrĂ€mer did not receive any funding. Heinz Wiendl did not receive any funding. J.L. Preiningerova was funded by Charles University Cooperation Program in Neuroscience, and General University Hospital in Prague project MH CZ-DRO-VFN64165
. O. Ciccarelli was funded by NIHR RP-2017-08-ST2-004 and supported by researchers at the National Institute for Health and Care Research (NIHR) University College London Hospitals (UCLH) Biomedical Research Center (BRC) including OC. E. Garcia-Martin received grant support: PI20/00437 (Carlos III Health Institute) and Inflammatory Disease Network (RICORS) (RD21/0002/0050) (Carlos III Health Institute). V. Kana received funding from the Swiss National Foundation and a Filling the Gap protected research time grant (University of Zurich), all outside of the submitted work. P.A. Calabresi reports no funding. F. Paul reports no funding. S. Saidha reports no funding. A. Petzold reports no funding. A. Toosy is supported by recent awards from the MRC (MR/S026088/1), NIHR BRC (541/CAP/OC/818837) and RoseTrees Trust (A1332 and PGL21/10079), and MSIF. B. Knier was funded by the Else Kröner-Fresenius-Stiftung (Else Kröner-Fresenius Exzellenzstipendium 2019_EKES.09) and the GemeinnĂŒtzige Hertie Foundation (medMS program) and received a research award from Novartis

    Burnout and Self-Reported Quality of Care in Community Mental Health

    Get PDF
    Staff burnout is widely believed to be problematic in mental healthcare, but few studies have linked burnout directly with quality of care. The purpose of this study was to examine the relationship between burnout and a newly developed scale for quality of care in a sample of community mental health workers (N=113). The Self-Reported Quality of Care scale had three distinct factors (Client-Centered Care, General Work Conscientiousness, and Low Errors), with good internal consistency. Burnout, particularly personal accomplishment, and to a lesser extent depersonalization, were predictive of overall self-rated Quality of Care, over and above background variables

    The Lantern Vol. 53, No. 2, Spring 1987

    Get PDF
    ‱ The One ‱ Homecoming-1946 ‱ Puff ‱ Victory ‱ The Prelude ‱ Playtime ‱ There\u27s a Killer in My Heart ‱ Who is Keats? ‱ Relationships ‱ It\u27s OK ‱ Rasping ‱ Wearers of Underwear ‱ Conjecture ‱ Look Her in the Eye ‱ Counterpoint ‱ When the Air is Biting ‱ A Stream of Consciousness ‱ Bach\u27s Concerto in E ‱ Tomorrow Morn ‱ Ruminations on Bob Dylan ‱ Last Night a Dream ‱ Stephen ‱ A Baseball Story ‱ I Am Sorry ‱ And Baby Makes Two ‱ Next on Mr. Steinbeck\u27s Itinerary ‱ Upon Visiting the Nursing Home ‱ Taps for Ralph ‱ Yes, I Believe ‱ The Morning After ‱ Conversation ‱ Dear Man ‱ Autumn Leaveshttps://digitalcommons.ursinus.edu/lantern/1130/thumbnail.jp

    Unrecognized diversity and distribution of soil algae from Maritime Antarctica (Fildes Peninsula, King George Island)

    Get PDF
    IntroductionEukaryotic algae in the top few centimeters of fellfield soils of ice-free Maritime Antarctica have many important effects on their habitat, such as being significant drivers of organic matter input into the soils and reducing the impact of wind erosion by soil aggregate formation. To better understand the diversity and distribution of Antarctic terrestrial algae, we performed a pilot study on the surface soils of Meseta, an ice-free plateau mountain crest of Fildes Peninsula, King George Island, being hardly influenced by the marine realm and anthropogenic disturbances. It is openly exposed to microbial colonization from outside Antarctica and connected to the much harsher and dryer ice-free zones of the continental Antarctic. A temperate reference site under mild land use, SchF, was included to further test for the Meseta algae distribution in a contrasting environment.MethodsWe employed a paired-end metabarcoding analysis based on amplicons of the highly variable nuclear-encoded ITS2 rDNA region, complemented by a clone library approach. It targeted the four algal classes, Chlorophyceae, Trebouxiophyceae, Ulvophyceae, and Xanthophyceae, representing key groups of cold-adapted soil algae.ResultsA surprisingly high diversity of 830 algal OTUs was revealed, assigned to 58 genera in the four targeted algal classes. Members of the green algal class Trebouxiophyceae predominated in the soil algae communities. The major part of the algal biodiversity, 86.1% of all algal OTUs, could not be identified at the species level due to insufficient representation in reference sequence databases. The classes Ulvophyceae and Xanthophyceae exhibited the most unknown species diversity. About 9% of the Meseta algae species diversity was shared with that of the temperate reference site in Germany.DiscussionIn the small portion of algal OTUs for which their distribution could be assessed, the entire ITS2 sequence identity with references shows that the soil algae likely have a wide distribution beyond the Polar regions. They probably originated from soil algae propagule banks in far southern regions, transported by aeolian transport over long distances. The dynamics and severity of environmental conditions at the soil surface, determined by high wind currents, and the soil algae’s high adaptability to harsh environmental conditions may account for the high similarity of soil algal communities between the northern and southern parts of the Meseta

    The OSCAR-MP Consensus Criteria for Quality Assessment of Retinal Optical Coherence Tomography Angiography

    Get PDF
    Background and Objectives Optical coherence tomography angiography (OCTA) is a noninvasive high-resolution imaging technique for assessing the retinal vasculature and is increasingly used in various ophthalmologic, neuro-ophthalmologic, and neurologic diseases. To date, there are no validated consensus criteria for quality control (QC) of OCTA. Our study aimed to develop criteria for OCTA quality assessment. Methods To establish criteria through (1) extensive literature review on OCTA artifacts and image quality to generate standardized and easy-to-apply OCTA QC criteria, (2) application of OCTA QC criteria to evaluate interrater agreement, (3) identification of reasons for interrater disagreement, revision of OCTA QC criteria, development of OCTA QC scoring guide and training set, and (4) validation of QC criteria in an international, interdisciplinary multicenter study. Results We identified 7 major aspects that affect OCTA quality: (O) obvious problems, (S) signal strength, (C) centration, (A) algorithm failure, (R) retinal pathology, (M) motion artifacts, and (P) projection artifacts. Seven independent raters applied the OSCAR-MP criteria to a set of 40 OCTA scans from people with MS, Sjogren syndrome, and uveitis and healthy individuals. The interrater kappa was substantial (Îș 0.67). Projection artifacts were the main reason for interrater disagreement. Because artifacts can affect only parts of OCTA images, we agreed that prior definition of a specific region of interest (ROI) is crucial for subsequent OCTA quality assessment. To enhance artifact recognition and interrater agreement on reduced image quality, we designed a scoring guide and OCTA training set. Using these educational tools, 23 raters from 14 different centers reached an almost perfect agreement (Îș 0.92) for the rejection of poor-quality OCTA images using the OSCAR-MP criteria. Discussion We propose a 3-step approach for standardized quality control: (1) To define a specific ROI, (2) to assess the occurrence of OCTA artifacts according to the OSCAR-MP criteria, and (3) to evaluate OCTA quality based on the occurrence of different artifacts within the ROI. OSCAR-MP OCTA QC criteria achieved high interrater agreement in an international multicenter study and is a promising QC protocol for application in the context of future clinical trials and studies

    The OSCAR-MP Consensus Criteria for Quality Assessment of Retinal Optical Coherence Tomography Angiography

    Get PDF
    BACKGROUND AND OBJECTIVES: Optical coherence tomography angiography (OCTA) is a noninvasive high-resolution imaging technique for assessing the retinal vasculature and is increasingly used in various ophthalmologic, neuro-ophthalmologic, and neurologic diseases. To date, there are no validated consensus criteria for quality control (QC) of OCTA. Our study aimed to develop criteria for OCTA quality assessment. METHODS: To establish criteria through (1) extensive literature review on OCTA artifacts and image quality to generate standardized and easy-to-apply OCTA QC criteria, (2) application of OCTA QC criteria to evaluate interrater agreement, (3) identification of reasons for interrater disagreement, revision of OCTA QC criteria, development of OCTA QC scoring guide and training set, and (4) validation of QC criteria in an international, interdisciplinary multicenter study. RESULTS: We identified 7 major aspects that affect OCTA quality: (O) obvious problems, (S) signal strength, (C) centration, (A) algorithm failure, (R) retinal pathology, (M) motion artifacts, and (P) projection artifacts. Seven independent raters applied the OSCAR-MP criteria to a set of 40 OCTA scans from people with MS, Sjogren syndrome, and uveitis and healthy individuals. The interrater kappa was substantial (Îș 0.67). Projection artifacts were the main reason for interrater disagreement. Because artifacts can affect only parts of OCTA images, we agreed that prior definition of a specific region of interest (ROI) is crucial for subsequent OCTA quality assessment. To enhance artifact recognition and interrater agreement on reduced image quality, we designed a scoring guide and OCTA training set. Using these educational tools, 23 raters from 14 different centers reached an almost perfect agreement (Îș 0.92) for the rejection of poor-quality OCTA images using the OSCAR-MP criteria. DISCUSSION: We propose a 3-step approach for standardized quality control: (1) To define a specific ROI, (2) to assess the occurrence of OCTA artifacts according to the OSCAR-MP criteria, and (3) to evaluate OCTA quality based on the occurrence of different artifacts within the ROI. OSCAR-MP OCTA QC criteria achieved high interrater agreement in an international multicenter study and is a promising QC protocol for application in the context of future clinical trials and studies

    MUSiC : a model-unspecific search for new physics in proton-proton collisions at root s=13TeV

    Get PDF
    Results of the Model Unspecific Search in CMS (MUSiC), using proton-proton collision data recorded at the LHC at a centre-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 35.9 fb(-1), are presented. The MUSiC analysis searches for anomalies that could be signatures of physics beyond the standard model. The analysis is based on the comparison of observed data with the standard model prediction, as determined from simulation, in several hundred final states and multiple kinematic distributions. Events containing at least one electron or muon are classified based on their final state topology, and an automated search algorithm surveys the observed data for deviations from the prediction. The sensitivity of the search is validated using multiple methods. No significant deviations from the predictions have been observed. For a wide range of final state topologies, agreement is found between the data and the standard model simulation. This analysis complements dedicated search analyses by significantly expanding the range of final states covered using a model independent approach with the largest data set to date to probe phase space regions beyond the reach of previous general searches.Peer reviewe

    Search for new particles in events with energetic jets and large missing transverse momentum in proton-proton collisions at root s=13 TeV

    Get PDF
    A search is presented for new particles produced at the LHC in proton-proton collisions at root s = 13 TeV, using events with energetic jets and large missing transverse momentum. The analysis is based on a data sample corresponding to an integrated luminosity of 101 fb(-1), collected in 2017-2018 with the CMS detector. Machine learning techniques are used to define separate categories for events with narrow jets from initial-state radiation and events with large-radius jets consistent with a hadronic decay of a W or Z boson. A statistical combination is made with an earlier search based on a data sample of 36 fb(-1), collected in 2016. No significant excess of events is observed with respect to the standard model background expectation determined from control samples in data. The results are interpreted in terms of limits on the branching fraction of an invisible decay of the Higgs boson, as well as constraints on simplified models of dark matter, on first-generation scalar leptoquarks decaying to quarks and neutrinos, and on models with large extra dimensions. Several of the new limits, specifically for spin-1 dark matter mediators, pseudoscalar mediators, colored mediators, and leptoquarks, are the most restrictive to date.Peer reviewe
    • 

    corecore