162 research outputs found

    GFZ Wireless Seismic Array (GFZ-WISE), a Wireless Mesh Network of Seismic Sensors: New Perspectives for Seismic Noise Array Investigations and Site Monitoring

    Get PDF
    Over the last few years, the analysis of seismic noise recorded by two dimensional arrays has been confirmed to be capable of deriving the subsoil shear-wave velocity structure down to several hundred meters depth. In fact, using just a few minutes of seismic noise recordings and combining this with the well known horizontal-to-vertical method, it has also been shown that it is possible to investigate the average one dimensional velocity structure below an array of stations in urban areas with a sufficient resolution to depths that would be prohibitive with active source array surveys, while in addition reducing the number of boreholes required to be drilled for site-effect analysis. However, the high cost of standard seismological instrumentation limits the number of sensors generally available for two-dimensional array measurements (i.e., of the order of 10), limiting the resolution in the estimated shear-wave velocity profiles. Therefore, new themes in site-effect estimation research by two-dimensional arrays involve the development and application of low-cost instrumentation, which potentially allows the performance of dense-array measurements, and the development of dedicated signal-analysis procedures for rapid and robust estimation of shear-wave velocity profiles. In this work, we present novel low-cost wireless instrumentation for dense two-dimensional ambient seismic noise array measurements that allows the real–time analysis of the surface-wavefield and the rapid estimation of the local shear-wave velocity structure for site response studies. We first introduce the general philosophy of the new system, as well as the hardware and software that forms the novel instrument, which we have tested in laboratory and field studies

    Seismic noise-based methods for soft-rock landslide characterization

    Get PDF
    International audienceIn order to better understand the mechanics and dynamic of landslides, it is of primary interest to image correctly their internal structure. Several active geophysical methods are able to provide the geometry of a given landslide, but were rarely applied in 3 dimensions in the past. The main disadvantages of methods like seismic reflection or electrical tomographies are that there are heavy to set up, require for some heavy processing tools to implement, and consequently are expensive and time consuming. Moreover, in the particular case of soft-rock landslides, their respective sensitivity and resolution are not always adequate to locate the potential slip surfaces. The passive methods, which require lighter instrumentation and easier processing tools, can represent an interesting alternative, particularly for difficult accessible landslides. Among them, the seismic noise based methods have shown increasing applications and developments, in particular for seismic hazard mapping in urban environment. In this paper, we present seismic noise investigations carried out on two different sites, a mudslide and a translational clayey landslide where independent measurements (geotechnical and geophysical tests) were performed earlier. Our investigations were composed of H/V measurements, which are fast and easy to perform in the field, in order to image shear wave contrasts (slip surfaces), and seismic noise array method, which is heavier to apply and interpret, but provides S-waves velocity profile versus depth. The comparisons between geophysical investigations and geotechnical information proved the applicability of such passive methods in 3D complexes, but also some limitations. Indeed interpretation of these measurements can be tricky in rough and non-homogeneous terrains

    Seismic site characterization of the Kastelli (Kissamos) Basin in northwest Crete (Greece): Assessments using ambient noise recordings

    Get PDF
    Crete is actively seismic and site response studies are needed for estimating local site conditions subjected to seismic activity. In order to collect basic data, we performed ambient noise recordings to estimate the site response of the surface and near subsurface structure of the small-scale Kastelli Basin in northwest Crete. The spatial horizontal to vertical spectral ratios (HVSR) resonance pattern of the investigated sites in the centre of the Basin consists of either one or two peaks divided into low to high frequency range in different sites as follows: (a) in some sites only one amplified peak at low frequencies (0.6–1.2 Hz), (b) in other sites only one amplified peak at medium frequencies (2.9–8.5 Hz) and (c) in yet other sites two amplified peaks in the low to high frequency range (0.6–15.5 Hz). The investigated sites are amplified in the frequency range 0.6–15.5 Hz, while the amplitude reaches to a factor of 4 in the spectral ratios. The one HVSR amplified peak at low frequencies is related to locally soft or thick Quaternary deposits. Microtremors were measured in the coastal northwest part of the Basin in a well—lithified Cretaceous limestone site characterized by fractures and faults striking predominantly in a sector NNE to NNW. Sites of one amplified peak at medium frequencies are extended from coastal northwest to southwest delineating a structure striking to NNW. The two amplified peaks are attributed to shallow subsurface heterogeneities/irregularities, locally induced by fault zones and to the overlying Quaternary deposits. Spatial HVSR variations in the frequency and HVSR shape delineate four structures striking NNE, NNW and in a sector NW to WNW, crosscutting the dense populated Basin suggesting that microtremors could be a valuable tool for providing a first approximation of fault zone delineation at least for the Kastelli-Kissamos Basin. The Basin is classified into the X soil category of the Greek Seismic Code 2000.This work was implemented through the project entitled “Interdisciplinary Multi-Scale Research of Earth-quake Physics and Seismotectonics at the Front of the Hellenic Arc (IMPACT-ARC)” in the framework of action “ARCHIMEDES III—Support of Research Teams at TEI of Crete” (MIS380353) of the Operational Program “Education and Lifelong Learning” and is co-financed by the European Union (European Social Fund) and Greek national fund

    Application of Surface wave methods for seismic site characterization

    Get PDF
    Surface-wave dispersion analysis is widely used in geophysics to infer a shear wave velocity model of the subsoil for a wide variety of applications. A shear-wave velocity model is obtained from the solution of an inverse problem based on the surface wave dispersive propagation in vertically heterogeneous media. The analysis can be based either on active source measurements or on seismic noise recordings. This paper discusses the most typical choices for collection and interpretation of experimental data, providing a state of the art on the different steps involved in surface wave surveys. In particular, the different strategies for processing experimental data and to solve the inverse problem are presented, along with their advantages and disadvantages. Also, some issues related to the characteristics of passive surface wave data and their use in H/V spectral ratio technique are discussed as additional information to be used independently or in conjunction with dispersion analysis. Finally, some recommendations for the use of surface wave methods are presented, while also outlining future trends in the research of this topic

    a review and some new issues on the theory of the h v technique for ambient vibrations

    Get PDF
    In spite of the Horizontal-to-Vertical Spectral Ratio (HVSR or H/V) technique obtained by the ambient vibrations is a very popular tool, a full theoretical explanation of it has been not reached yet. A short excursus is here presented on the theoretical models explaining the H/V spectral ratio that have been development in last decades. It leads to the present two main research lines: one aims at describing the H/V curve by taking in account the whole ambient-vibration wavefield, and another just studies the Rayleigh ellipticity. For the first theoretical branch, a comparison between the most recent two models of the ambient-vibration wavefield is presented, which are the Distributed Surface Sources (DSS) one and the Diffuse Field Approach (DFA). A mention is done of the current developments of these models and of the use of the DSS for comparing the H/V spectral ratio definitions present in literature. For the second research branch, some insights about the connection between the so-called osculation points of the Rayleigh dispersion curves and the behaviour of the H/V curve are discussed

    Analyses of seismic waves from a small explosion and ground noises -1-

    No full text
    • 

    corecore