243 research outputs found

    Can an underestimation of opacity explain B-type pulsators in the SMC?

    Full text link
    Slowly Pulsating B and β\beta Cephei are κ\kappa mechanism driven pulsating B stars. That κ\kappa mechanism works since a peak in the opacity due to a high number of atomic transitions from iron-group elements occurs in the area of logT5.3\log T \approx 5.3. Theoretical results predict very few SPBs and no β\beta Cep to be encountered in low metallicity environments such as the Small Magellanic Cloud. However recent variability surveys of B stars in the SMC reported the detection of a significant number of SPB and β\beta Cep candidates. Though the iron content plays a major role in the excitation of β\beta Cep and SPB pulsations, the chemical mixture representative of the SMC B stars such as recently derived does not leave room for a significant increase of the iron abundance in these stars. Whilst abundance of iron-group elements seems reliable, is the opacity in the iron-group elements bump underestimated? We determine how the opacity profile in B-type stars should change to excite SPB and β\beta Cep pulsations in early-type stars of the SMC.Comment: 5 pages, 7 figures, to appear under electronic form in : Proceedings of the 4th HELAS International Conference: Seismological Challenges for Stellar Structur

    Symbol-asynchronous transmission in multibeam satellite user down-link : rate regions for novel superposition coding schemes

    Get PDF
    We consider the forward link of a multibeam satellite system with high spectral reuse and the novel low-complexity transmission and detection strategies from [1]. More specifically, we study the impact of a time offset between the antenna beams that cooperate to simultaneously serve a given user. Assuming Gaussian signaling, we provide closed-form expressions for the achievable rate region. It is demonstrated that, in the absence of timing information at the gateway, this region is not affected by a time offset. Our numerical results further show that, in case timing is known at the gateway, an offset of half a symbol period at both user terminals is optimal in terms of spectral efficiency.Grant numbers : Satellite Network of Experts IV. © 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works

    Non-coherent rate-splitting for multibeam satellite forward link : practical coding and decoding algorithms

    Get PDF
    Non-Coherent Rate-Splitting (NCRS) was recently proposed as a practical multiuser coding and decoding scheme to increase the spectral efficiency of multibeam satellite communication systems. In this paper, we further study the practical realization of NCRS. We propose a modified coding scheme (NCRS*) that is robust to a nonzero time offset among beams. In NCRS*, as opposed to NCRS, the beams send independently channel encoded and modulated waveforms. We assess the performance of NCRS* in terms of the achievable rate region. It is shown that NCRS* performs worse than NCRS, but better than or comparable to other competing schemes, which, as opposed to NCRS*, require flexible bandwidth allocation or perfect synchronization at the transmitter. We also propose a new N-MAP algorithm for the practical implementation of NCRS* receivers. Similar to the existing UMAP algorithm, N-MAP takes into account the modulation used by, and the time offset between, the signals received from the different beams. In most cases, however, N-MAP has a significantly lower complexity than U-MAP

    Periodic mass loss episodes due to an oscillation mode with variable amplitude in the hot supergiant HD50064

    Get PDF
    We aim to interpret the photometric and spectroscopic variability of the luminous blue variable supergiant HD\,50064 (V=8.21V=8.21).CoRoT space photometry and follow-up high-resolution spectroscopy, with a time base of 137\,d and 169\,d, respectively, was gathered, analysed and interpreted using standard time series analysis and light curve modelling methods as well as spectral line diagnostics.The space photometry reveals one period of 37\,d, which undergoes a sudden amplitude change with a factor 1.6. The pulsation period is confirmed in the spectroscopy, which additionally reveals metal line radial velocity values differing by 30\sim 30\,km\,s1^{-1} depending on the spectral line and on the epoch. We estimate \teff\sim13\,500\,K, \logg\sim1.5 from the equivalent width of Si lines. The Balmer lines reveal that the star undergoes episodes of changing mass loss on a time scale similar to the changes in the photometric and spectroscopic variability, with an average value of logM˙5\log\dot{\rm M}\simeq-5 (in M_\odot\,yr1^{-1}). We tentatively interpret the 37\,d period as due to a strange mode oscillation.Comment: 4 pages, accepted for publication in Astronomy & Astrophysics Letter

    Solar-like oscillations in a massive star

    Full text link
    Seismology of stars provides insight into the physical mechanisms taking place in their interior, with modes of oscillation probing different layers. Low-amplitude acoustic oscillations excited by turbulent convection were detected four decades ago in the Sun and more recently in low-mass main-sequence stars. Using data gathered by the Convection Rotation and Planetary Transits mission, we report here on the detection of solar-like oscillations in a massive star, V1449 Aql, which is a known large-amplitude (b Cephei) pulsator.Comment: Published in Sience, 19 June 2009, vol. 324, p. 154

    Stellar ages and convective cores in field main-sequence stars: first asteroseismic application to two Kepler targets

    Full text link
    Using asteroseismic data and stellar evolution models we make the first detection of a convective core in a Kepler field main-sequence star, putting a stringent constraint on the total size of the mixed zone and showing that extra mixing beyond the formal convective boundary exists. In a slightly less massive target the presence of a convective core cannot be conclusively discarded, and thus its remaining main-sequence life time is uncertain. Our results reveal that best-fit models found solely by matching individual frequencies of oscillations corrected for surface effects do not always properly reproduce frequency combinations. Moreover, slightly different criteria to define what the best-fit model is can lead to solutions with similar global properties but very different interior structures. We argue that the use of frequency ratios is a more reliable way to obtain accurate stellar parameters, and show that our analysis in field main-sequence stars can yield an overall precision of 1.5%, 4%, and 10% in radius, mass and age, respectively. We compare our results with those obtained from global oscillation properties, and discuss the possible sources of uncertainties in asteroseismic stellar modeling where further studies are still needed.Comment: 46 pages, 10 figures, ApJ accepte

    Core properties of alpha Cen A using asteroseismology

    Full text link
    A set of long and nearly continuous observations of alpha Centauri A should allow us to derive an accurate set of asteroseismic constraints to compare to models, and make inferences on the internal structure of our closest stellar neighbour. We intend to improve the knowledge of the interior of alpha Centauri A by determining the nature of its core. We combined the radial velocity time series obtained in May 2001 with three spectrographs in Chile and Australia: CORALIE, UVES, and UCLES. The resulting combined time series has a length of 12.45 days and contains over 10,000 data points and allows to greatly reduce the daily alias peaks in the power spectral window. We detected 44 frequencies that are in good overall agreement with previous studies, and found that 14 of these show possible rotational splittings. New values for the large and small separations have been derived. A comparison with stellar models indicates that the asteroseismic constraints determined in this study allows us to set an upper limit to the amount of convective-core overshooting needed to model stars of mass and metallicity similar to those of alpha Cen A.Comment: 8 pages, 11 figures, A&A accepte

    New Constraints on the Origin of the Short-Term Cyclical Variability of the Wolf-Rayet Star WR 46

    Full text link
    The Wolf-Rayet star WR 46 is known to exhibit a very complex variability pattern on relatively short time scales of a few hours. Periodic but intermittent radial velocity shifts of optical lines as well as multiple photometric periods have been found in the past. Non-radial pulsations, rapid rotational modulation or the presence of a putative low-mass companion have been proposed to explain the short-term behaviour. In an effort to unveil its true nature, we observed WR 46 with FUSE (Far Ultraviolet Spectroscopic Explorer) over several short-term variability cycles. We found significant variations on a time scale of ~8 hours in the far-ultraviolet (FUV) continuum, in the blue edge of the absorption trough of the OVI {\lambda}{\lambda}1032, 1038 doublet P Cygni profile and in the SVI {\lambda}{\lambda}933, 944 P Cygni absorption profile. We complemented these observations with X-ray and UV light-curves and an X-ray spectrum from archival XMM-Newton (X-ray Multi-Mirror Mission - Newton Space Telescope) data. The X-ray and UV light-curves show variations on a time scale similar to the variability found in the FUV. We discuss our results in the context of the different scenarios suggested to explain the short-term variability of this object and reiterate that non-radial pulsations is the most likely to occur.Comment: 36 pages, 11 figures. Accepted for publication in Ap

    Management of hepatocellular adenoma during pregnancy

    Get PDF
    Background & Aims: Hepatocellular adenoma in pregnant women requires special considerations because of the risk of hormone induced growth and rupture. To prevent these potential lethal complications, pregnancy is either often discouraged or the surgical resection of large adenomas is recommended. It may be questioned whether it is justified to deny a young woman a pregnancy, as the biological behaviour of hepatocellular adenoma may be less threatening than presumed. In this study we establish the management of hepatocellular adenoma during pregnancy based on our own experience and literature. Methods: Twelve women with documented hepatocellular adenoma were closely monitored during a total of 17 pregnancies between 2000 and 2009. Their files were reviewed. Results: In four cases, hepatocellular adenomas grew during pregnancy, requiring a Caesarean section in one patient (two pregnancies) at 36 and 34 weeks because of an assumed high risk of rupture. In one case radiofrequency ablation therapy was applied in the first trimester to treat a hormone sensitive hepatocellular adenoma, thereby excluding potential growth later in pregnancy. No intervention was performed in the other 14 cases and all pregnancies had an uneventful course with a successful maternal and fetal outcome. Conclusions: A "wait and see" management may be advocated in pregnant women presenting with a hepatocellular adenoma. In women with large tumours or in whom hepatocellular adenoma had complicated previous pregnancies, surgical resection may be recommended. In women with smaller adenomas it may no longer be necessary to discourage pregnancy
    corecore