research

Can an underestimation of opacity explain B-type pulsators in the SMC?

Abstract

Slowly Pulsating B and β\beta Cephei are κ\kappa mechanism driven pulsating B stars. That κ\kappa mechanism works since a peak in the opacity due to a high number of atomic transitions from iron-group elements occurs in the area of logT5.3\log T \approx 5.3. Theoretical results predict very few SPBs and no β\beta Cep to be encountered in low metallicity environments such as the Small Magellanic Cloud. However recent variability surveys of B stars in the SMC reported the detection of a significant number of SPB and β\beta Cep candidates. Though the iron content plays a major role in the excitation of β\beta Cep and SPB pulsations, the chemical mixture representative of the SMC B stars such as recently derived does not leave room for a significant increase of the iron abundance in these stars. Whilst abundance of iron-group elements seems reliable, is the opacity in the iron-group elements bump underestimated? We determine how the opacity profile in B-type stars should change to excite SPB and β\beta Cep pulsations in early-type stars of the SMC.Comment: 5 pages, 7 figures, to appear under electronic form in : Proceedings of the 4th HELAS International Conference: Seismological Challenges for Stellar Structur

    Similar works

    Full text

    thumbnail-image