62 research outputs found
Molar mass and solution conformation of branched alpha(1 - 4), alpha(1 - 6) Glucans. Part I: Glycogens in water
Solution molar masses and conformations of glycogens from different sources (rabbit, oyster, mussel and bovine) were analysed using sedimentation velocity in the analytical ultracentrifuge, size-exclusion chromatography coupled to multi-angle laser light scattering (SEC-MALLS), size-exclusion chromatography coupled to a differential pressure viscometer and dynamic light scattering. Rabbit, oyster and mussel glycogens consisted of one population of high molar mass (weight averages ranging from 4.6 x 106 to 1.1 x 107 g/mol) as demonstrated by sedimentation velocity and SEC-MALLS, whereas bovine glycogen had a bimodal distribution of significantly lower molar mass (1.0 x 105 and 4.5 x 105 g/mol). The spherical structure of all glycogen molecules was demonstrated in the slopes of the Mark-Houwink-Kuhn-Sakurada-type power-law relations for sedimentation coefficient (s20,wo), intrinsic viscosity ([Ă·]), radius of gyration (rg,z) and radius of hydration (rH,z), respectively, and was further supported by the Ăïżœ (=rg,z/rH,z) function, the fractal dimension and the Perrin function. The degree of branching was estimated to be ĂąËÂŒ10% from the shrinking factors, gĂąâŹÂČ (=[Ă·]branched/[Ă·]linear) and also h (=(f/fo)branched/(f/fo)linear), respectively, where (f/fo) is the translational frictional ratio, consistent with expectation. Ă© 2007 Elsevier Ltd. All rights reserved
Differential Scanning Fluorimetry provides high throughput data on silk protein transitions
Here we present a set of measurements using Differential Scanning Fluorimetry (DSF) as an inexpensive, high throughput screening method to investigate the folding of silk protein molecules as they abandon their first native melt conformation, dehydrate and denature into their final solid filament conformation. Our first data and analyses comparing silks from spiders, mulberry and wild silkworms as well as reconstituted âsilkâ fibroin show that DSF can provide valuable insights into details of silk denaturation processes that might be active during spinning. We conclude that this technique and technology offers a powerful and novel tool to analyse silk protein transitions in detail by allowing many changes to the silk solutions to be tested rapidly with microliter scale sample sizes. Such transition mechanisms will lead to important generic insights into the folding patterns not only of silks but also of other fibrous protein (bio)polymers
Standardisation of magnetic nanoparticles in liquid suspension
Suspensions of magnetic nanoparticles offer diverse opportunities for technology innovation, spanning a large number of industry sectors from imaging and actuation based applications in biomedicine and biotechnology, through large-scale environmental remediation uses such as water purification, to engineering-based applications such as position-controlled lubricants and soaps. Continuous advances in their manufacture have produced an ever-growing range of products, each with their own unique properties. At the same time, the characterisation of magnetic nanoparticles is often complex, and expert knowledge is needed to correctly interpret the measurement data. In many cases, the stringent requirements of the end-user technologies dictate that magnetic nanoparticle products should be clearly defined, well characterised, consistent and safe; or to put it another wayâstandardised. The aims of this document are to outline the concepts and terminology necessary for discussion of magnetic nanoparticles, to examine the current state-of-the-art in characterisation methods necessary for the most prominent applications of magnetic nanoparticle suspensions, to suggest a possible structure for the future development of standardisation within the field, and to identify areas and topics which deserve to be the focus of future work items. We discuss potential roadmaps for the future standardisation of this developing industry, and the likely challenges to be encountered along the way
Arc is a flexible modular protein capable of reversible self-oligomerization
The immediate early gene product Arc (activity-regulated cytoskeleton-associated protein) is posited as a master regulator of long-term synaptic plasticity and memory. However, the physicochemical and structural properties of Arc have not been elucidated. In the present study, we expressed and purified recombinant human Arc (hArc) and performed the first biochemical and biophysical analysis of hArc's structure and stability. Limited proteolysis assays and MS analysis indicate that hArc has two major domains on either side of a central more disordered linker region, consistent with in silico structure predictions. hArc's secondary structure was estimated using CD, and stability was analysed by CD-monitored thermal denaturation and differential scanning fluorimetry (DSF). Oligomerization states under different conditions were studied by dynamic light scattering (DLS) and visualized by AFM and EM. Biophysical analyses show that hArc is a modular protein with defined secondary structure and loose tertiary structure. hArc appears to be pyramid-shaped as a monomer and is capable of reversible self-association, forming large soluble oligomers. The N-terminal domain of hArc is highly basic, which may promote interaction with cytoskeletal structures or other polyanionic surfaces, whereas the C-terminal domain is acidic and stabilized by ionic conditions that promote oligomerization. Upon binding of presenilin-1 (PS1) peptide, hArc undergoes a large structural change. A non-synonymous genetic variant of hArc (V231G) showed properties similar to the wild-type (WT) protein. We conclude that hArc is a flexible multi-domain protein that exists in monomeric and oligomeric forms, compatible with a diverse, hub-like role in plasticity-related processes
Recommended from our members
DLS microrheology at the onset of weak elasticity during thermal denaturation of BSA
- âŠ