135 research outputs found

    A multi-Fc-species system for recombinant antibody production

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Genomic, transcriptomic and proteomic projects often suffer from a lack of functional validation creating a strong demand for specific and versatile antibodies. Antibody phage display represents an attractive approach to select rapidly <it>in vitro </it>the equivalent of monoclonal antibodies, like single chain Fv antibodies, in an inexpensive and animal free way. However, so far, recombinant antibodies have not managed to impose themselves as efficient alternatives to natural antibodies.</p> <p>Results</p> <p>We developed a series of vectors that allow one to easily fuse single chain Fv antibodies to Fc domains of immunoglobulins, improving their sensitivity and facilitating their use. This series enables the fusion of single chain Fv antibodies with human, mouse or rabbit Fc so that a given antibody is no longer restricted to a particular species. This opens up unlimited multiplexing possibilities and gives additional value to recombinant antibodies. We also show that this multi-Fc species production system can be applied to natural monoclonal antibodies cloned as single chain Fv antibodies and we converted the widely used 9E10 mouse anti-Myc-tag antibody into a human and a rabbit antibody.</p> <p>Conclusion</p> <p>Altogether, this new expression system, that brings constant quality, sensitivity and unique versatility, will be important to broaden the use of recombinant and natural monoclonal antibodies both for laboratory and diagnosis use.</p

    Sélection d'anticorps recombinants dirigés contre des matériaux inorganiques pour des applications en nanosciences

    Get PDF
    Les matériaux inorganiques ont des propriétés uniques à l'échelle nanométrique. Ces propriétés ont généré beaucoup d'intérêt pour fabriquer des nouveaux matériaux utilisant des nano-objets comme unité de construction. Nous avons suivi une approche biomimétique pour la fabrication de dispositifs à base de nanoparticules afin d'améliorer les méthodes actuelles de fabrication top-down et bottom-up. Certaines protéines naturelles se lient en effet spécifiquement à des matériaux inorganiques, et déclenchent notamment la croissance de cristaux inorganiques. Une première étape dans cette approche biomimétique est de comprendre comment des protéines se lient spécifiquement à des nanomatériaux inorganiques. Nous avons exploré ce mécanisme de reconnaissance en sélectionnant des anticorps (les protéines de notre système immunitaire spécialisées dans les interactions avec de nombreuses cibles) contre des matériaux inorganiques par la méthode combinatoire biotechnologique appelée "phage display". Cette technique permet d'obtenir la séquence génétique codante des anticorps sélectionnés se liant à leur cible à partir d'une banque aléatoire d'anticorps. L'analyse statistique des séquences des anticorps sélectionnés fournit de nouvelles informations sur les interactions protéines/matériaux inorganiques. Notre principale conclusion est l'identification de l'acide aminé arginine en tant que contributeur majeur dans les interactions protéine/or. L'ingénierie génétique des anticorps permet de fonctionnaliser ces nouvelles sondes de matériaux inorganiques en vue de leur utilisation pour des applications dans le domaine des nanomatériaux. Les anticorps recombinants sélectionnés et leurs dérivés fonctionnalisés peuvent être exprimés par sécrétion à l'aide d'un hôte eucaryote (Dictyostelium discoideum) mis au point au cours de cette thèse.Inorganic materials have unique properties at the nanometer scale. These properties have generated a lot of interest among researchers to fabricate novel materials using nano objects as building units. In this PhD thesis, we have attempted to mimick nature in the fabrication of nanoparticle based devices in order to improve upon current top-down and bottom-up nanomaterial fabrication methods. Proteins can specifically bind inorganic materials and trigger crystal growth and thus are considered as the main building units for a biomimetic approach of fabrication. The first step towards mimicking nature is to explore how proteins bind specifically to nanomaterials. We have explored this recognition mechanism by selecting antibodies (the protein binders of our immune system) against inorganic nanomaterials using the combinatorial biotechnology method of phage display. This technique provides us with the genetic sequence of selected antibodies from a random antibody library exposed against a target. Statistical analysis of selected antibody sequences provides new information on proteins/inorganics interactions. Our main finding in this regard is the identification of the amino acid arginine as a major contributor to protein/gold interactions. Additional functionality to these new binders of inorganic materials is obtained by antibody engineering, allowing for their value added use in nanomaterial science applications. Selected recombinant antibodies and their engineered derivatives along with other recombinant protein can be expressed and secreted using a eukaryotic expression platform (Dictyostelium discoideum) developed during this thesis.SAVOIE-SCD - Bib.électronique (730659901) / SudocGRENOBLE1/INP-Bib.électronique (384210012) / SudocGRENOBLE2/3-Bib.électronique (384219901) / SudocSudocFranceF

    Characterization of single chain antibody targets through yeast two hybrid

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Due to their unique ability to bind their targets with high fidelity, antibodies are used widely not only in biomedical research, but also in many clinical applications. Recombinant antibodies, including single chain variable fragments (scFv), are gaining momentum because they allow powerful <it>in vitro </it>selection and manipulation without loss of function. Regardless of the ultimate application or type of antibody used, precise understanding of the interaction between the antibody's binding site and its specific target epitope(s) is of great importance. However, such data is frequently difficult to obtain.</p> <p>Results</p> <p>We describe an approach that allows detailed characterization of a given antibody's target(s) using the yeast two-hybrid system. Several recombinant scFv were used as bait and screened against highly complex cDNA libraries. Systematic sequencing of all retained clones and statistical analysis allowed efficient ranking of the prey fragments. Multiple alignment of the obtained cDNA fragments provided a selected interacting domain (SID), efficiently narrowing the epitope-containing region.</p> <p>Interactions between antibodies and their respective targets were characterized for several scFv. For AA2 and ROF7, two conformation-specific sensors that exclusively bind the activated forms of the small GTPases Rab6 and Rab1 respectively, only fragments expressing the entire target protein's core region were retained. This strongly suggested interaction with a non-linear epitope. For two other scFv, TA10 and SF9, which recognize the large proteins giantin and non-muscle myosin IIA, respectively, precise antibody-binding regions within the target were defined. Finally, for some antibodies, secondary targets within and across species could be revealed.</p> <p>Conclusions</p> <p>Our method, utilizing the yeast two-hybrid technology and scFv as bait, is a simple yet powerful approach for the detailed characterization of antibody targets. It allows precise domain mapping for linear epitopes, confirmation of non-linear epitopes for conformational sensors, and detection of secondary binding partners. This approach may thus prove to be an elegant and rapid method for the target characterization of newly obtained scFv antibodies. It may be considered prior to any research application and particularly before any use of such recombinant antibodies in clinical medicine.</p

    mRNA Display Design of Fibronectin-based Intrabodies That Detect and Inhibit Severe Acute Respiratory Syndrome Coronavirus Nucleocapsid Protein

    Get PDF
    The nucleocapsid (N) protein of severe acute respiratory syndrome (SARS) coronavirus plays important roles in both viral replication and modulation of host cell processes. New ligands that target the N protein may thus provide tools to track the protein inside cells, detect interaction hot spots on the protein surface, and discover sites that could be used to develop new anti-SARS therapies. Using mRNA display selection and directed evolution, we designed novel antibody-like protein affinity reagents that target SARS N protein with high affinity and selectivity. Our libraries were based on an 88-residue variant of the 10th fibronectin type III domain from human fibronectin (10Fn3). This selection resulted in eight independent 10Fn3 intrabodies, two that require the N-terminal domain for binding and six that recognize the C terminus, one with K_d = 1.7 nM. 10Fn3 intrabodies are well expressed in mammalian cells and are relocalized by N in SARS-infected cells. Seven of the selected intrabodies tested do not perturb cellular function when expressed singly in vivo and inhibit virus replication from 11- to 5900-fold when expressed in cells prior to infection. Targeting two sites on SARS-N simultaneously using two distinct 10Fn3s results in synergistic inhibition of virus replication

    Effect of Dose And Time of Npk Fertilizer Application on The Growth And Yield of Tomato Plants (Lycopersicum Esculentum Mill)

    Get PDF
    The purpose of this study is to examine the effect of the dose and time of NPK fertilizer application on the growth and yield of tomato plants (Lycopersicum esculentum Mill). The study was conducted from April to July 2018 at the Experimental Garden of the Faculty of Agriculture, Merdeka University Surabaya, on Ketintang Madya VII-2 Street Surabaya, East Java with altitude of ± 5 m above sea level. The study used Factorial Randomized Block Design (RBD) consisting of two factors with three replications and two sample plants. The first factor was NPK fertilizer doses (N1 = NPK 2 gr / plant; N2 = NPK 4 gr / plant; N3 = NPK 6 gr / plant) and the second factor was the time of NPK application (W1 = day 0; W2 = day 0-14; W3 = day 0-14-28). The results shows that the combination treatment of dose and application time of NPK has a very significant effect on plant height, number of leaves, total fruit number and total fruit weight of tomato plants. The combination treatment of N3W3 (NPK 6 gr / plant and day 0-14-28) appears to produce the highest growth and yield of tomato plants though, statistically (BNT 5%), this was not significantly different from the combination treatment of N2W3 (NPK 4 gr / plants and 0-14-28 days)

    Exploitation of Other Social Amoebae by Dictyostelium caveatum

    Get PDF
    Dictyostelium amoebae faced with starvation trigger a developmental program during which many cells aggregate and form fruiting bodies that consist of a ball of spores held aloft by a thin stalk. This developmental strategy is open to several forms of exploitation, including the remarkable case of Dictyostelium caveatum, which, even when it constitutes 1/10(3) of the cells in an aggregate, can inhibit the development of the host and eventually devour it. We show that it accomplishes this feat by inhibiting a region of cells, called the tip, which organizes the development of the aggregate into a fruiting body. We use live-cell microscopy to define the D. caveatum developmental cycle and to show that D. caveatum amoebae have the capacity to ingest amoebae of other Dictyostelid species, but do not attack each other. The block in development induced by D. caveatum does not affect the expression of specific markers of prespore cell or prestalk cell differentiation, but does stop the coordinated cell movement leading to tip formation. The inhibition mechanism involves the constitutive secretion of a small molecule by D. caveatum and is reversible. Four Dictyostelid species were inhibited in their development, while D. caveatum is not inhibited by its own compound(s). D. caveatum has evolved a predation strategy to exploit other members of its genus, including mechanisms of developmental inhibition and specific phagocytosis

    Phosphorylation and membrane dissociation of the ARF exchange factor GBF1 in mitosis

    Get PDF
    Secretory protein trafficking is arrested and the Golgi apparatus fragmented when mammalian cells enter mitosis. These changes are thought to facilitate cell cycle progression and Golgi inheritance, and are brought about through the actions of mitotically active protein kinases. To better understand how the Golgi apparatus undergoes mitotic fragmentation we have sought to identify novel Golgi targets for mitotic kinases. We report here the identification of the ARF exchange factor GBF1 as a Golgi phosphoprotein. GBF1 is phosphorylated by CDK1-cyclin B in mitosis, which results in its dissociation from Golgi membranes. Consistent with a reduced level of GBF1 activity at the Golgi membrane there is a reduction in levels of membrane-associated GTP-bound ARF in mitotic cells. Despite the reduced levels of membrane bound GBF1 and ARF, COPI binding to the Golgi membrane appears unaffected in mitotic cells. Surprisingly, this pool of COPI is dependent upon GBF1 for its recruitment to the membrane, suggesting a low level of GBF1 activity persists in mitosis. We propose that the phosphorylation and membrane dissociation of GBF1 and the consequent reduction in ARF-GTP levels in mitosis are important for changes in Golgi dynamics and possibly other mitotic events mediated through effectors other than the COPI vesicle coat

    8p22 MTUS1 Gene Product ATIP3 Is a Novel Anti-Mitotic Protein Underexpressed in Invasive Breast Carcinoma of Poor Prognosis

    Get PDF
    BACKGROUND: Breast cancer is a heterogeneous disease that is not totally eradicated by current therapies. The classification of breast tumors into distinct molecular subtypes by gene profiling and immunodetection of surrogate markers has proven useful for tumor prognosis and prediction of effective targeted treatments. The challenge now is to identify molecular biomarkers that may be of functional relevance for personalized therapy of breast tumors with poor outcome that do not respond to available treatments. The Mitochondrial Tumor Suppressor (MTUS1) gene is an interesting candidate whose expression is reduced in colon, pancreas, ovary and oral cancers. The present study investigates the expression and functional effects of MTUS1 gene products in breast cancer. METHODS AND FINDINGS: By means of gene array analysis, real-time RT-PCR and immunohistochemistry, we show here that MTUS1/ATIP3 is significantly down-regulated in a series of 151 infiltrating breast cancer carcinomas as compared to normal breast tissue. Low levels of ATIP3 correlate with high grade of the tumor and the occurrence of distant metastasis. ATIP3 levels are also significantly reduced in triple negative (ER- PR- HER2-) breast carcinomas, a subgroup of highly proliferative tumors with poor outcome and no available targeted therapy. Functional studies indicate that silencing ATIP3 expression by siRNA increases breast cancer cell proliferation. Conversely, restoring endogenous levels of ATIP3 expression leads to reduced cancer cell proliferation, clonogenicity, anchorage-independent growth, and reduces the incidence and size of xenografts grown in vivo. We provide evidence that ATIP3 associates with the microtubule cytoskeleton and localizes at the centrosomes, mitotic spindle and intercellular bridge during cell division. Accordingly, live cell imaging indicates that ATIP3 expression alters the progression of cell division by promoting prolonged metaphase, thereby leading to a reduced number of cells ungergoing active mitosis. CONCLUSIONS: Our results identify for the first time ATIP3 as a novel microtubule-associated protein whose expression is significantly reduced in highly proliferative breast carcinomas of poor clinical outcome. ATIP3 re-expression limits tumor cell proliferation in vitro and in vivo, suggesting that this protein may represent a novel useful biomarker and an interesting candidate for future targeted therapies of aggressive breast cancer
    corecore