26 research outputs found

    Wildfire smoke triggers cirrus formation: lidar observations over the eastern Mediterranean

    Get PDF
    The number of intense wildfires may increase further in upcoming years as a consequence of climate change. It is therefore necessary to improve our knowledge about the role of smoke in the climate system, with emphasis on the impact of smoke particles on the evolution of clouds, precipitation, and cloud radiative properties. Presently, one key aspect of research is whether or not wildfire smoke particles can initiate cirrus formation. In this study, we present lidar observations over Limassol, Cyprus, from 27 October to 3 November 2020, when extended wildfire smoke fields crossed the Mediterranean Basin from Portugal to Cyprus. We found strong evidence that aged smoke (organic aerosol particles) originating from wildfires in North America triggered significant ice nucleation at temperatures from −47 to −53 ∘C and caused the formation of extended cirrus layers. The observations suggest that the ice crystals were nucleated just below the tropopause in the presence of smoke particles serving as ice-nucleating particles (INPs). The main part of the 2–3 km thick smoke layer was, however, in the lower stratosphere just above the tropopause. With actual radiosonde observations of temperature and relative humidity and lidar-derived smoke particle surface area concentrations used as starting values, gravity wave simulations show that the lofting of air by 100–200 m is sufficient to initiate significant ice nucleation on the smoke particles, leading to ice crystal number concentrations of 1–100 L−1.</p

    ATHENA: remote sensing science center for cultural heritage in Cyprus

    Get PDF
    Geophysical Research Abstracts, 2016, Volume 18, EGU2016-PREVIEWThe envisage ATHENA center will be devoted to the development, introduction and systematic use of advanced remote sensing science and technologies in the field of archaeology and built cultural heritage, the multi-temporal analysis and interpretation and the distant monitoring of their natural and anthropogenic environment in the area of Eastern Mediterranean. ATHENA will take advantage of the current capabilities of Cyprus University of Technology (CUT), both in terms of technical and staff capacity and technological readiness of the existing Lab, performing advanced research to support CH sector. The Center aims to be in close collaboration with national and international research institutes and stakeholders, providing integrated remote sensing services and solutions in the area of Eastern Mediterranean, rendering that way ATHENA a center of knowledge and an established lab in the field of Remote Sensing Archaeology

    Ice-nucleating particle versus ice crystal number concentrationin altocumulus and cirrus layers embedded in Saharan dust:a closure study

    Get PDF
    For the first time, a closure study of the relationship between the ice-nucleating particle concentration (INP; INPC) and ice crystal number concentration (ICNC) in altocumulus and cirrus layers, solely based on groundbased active remote sensing, is presented. Such aerosol- cloud closure experiments are required (a) to better understand aerosol-cloud interaction in the case of mixed-phase clouds, (b) to explore to what extent heterogeneous ice nucleation can contribute to cirrus formation, which is usually controlled by homogeneous freezing, and (c) to check the usefulness of available INPC parameterization schemes, applied to lidar profiles of aerosol optical and microphysical properties up to the tropopause level. The INPC-ICNC closure studies were conducted in Cyprus (Limassol and Nicosia) during a 6-week field campaign in March-April 2015 and during the 17-month CyCARE (Cyprus Clouds Aerosol and Rain Experiment) campaign. The focus was on altocumulus and cirrus layers which developed in pronounced Saharan dust layers at heights from 5 to 11 km. As a highlight, a long-lasting cirrus event was studied which was linked to the development of a very strong dust-infused baroclinic storm (DIBS) over Algeria. The DIBS was associated with strong convective cloud development and lifted large amounts of Saharan dust into the upper troposphere, where the dust influenced the evolution of an unusually large anvil cirrus shield and the subsequent transformation into an cirrus uncinus cloud system extending from the eastern Mediterranean to central Asia, and thus over more than 3500 km. Cloud top temperatures of the three discussed closure study cases ranged from - 20 to -57 °C. The INPC was estimated from polarization/Raman lidar observations in combination with published INPC parameterization schemes, whereas the ICNC was retrieved from combined Doppler lidar, aerosol lidar, and cloud radar observations of the terminal velocity of falling ice crystals, radar reflectivity, and lidar backscatter in combination with the modeling of backscattering at the 532 and 8.5 mm wavelengths. A good-to-acceptable agreement between INPC (observed before and after the occurrence of the cloud layer under investigation) and ICNC values was found in the discussed three proof-of-concept closure experiments. In these case studies, INPC and ICNC values matched within an order of magnitude (i.e., within the uncertainty ranges of the INPC and ICNC estimates), and they ranged from 0.1 to 10 L-1 in the altocumulus layers and 1 to 50 L-1 in the cirrus layers observed between 8 and 11 km height. The successful closure experiments corroborate the important role of heterogeneous ice nucleation in atmospheric ice formation processes when mineral dust is present. The observed longlasting cirrus event could be fully explained by the presence of dust, i.e., without the need for homogeneous ice nucleation processes

    Wildfire smoke triggers cirrus formation: Lidar observations over the Eastern Mediterranean (Cyprus)

    Get PDF
    The number of intense wildfires may increase in the upcoming years as a consequence of climate change. Changing aerosol conditions may lead to changes in regional and global cloud and precipitation pattern. One key aspect of research is presently whether or not wildfire smoke particles can initiate ice nucleation. We found strong evidence that aged smoke particles (dominated by organic aerosol particles) originating from wildfires in North America triggered significant ice nucleation at temperatures from−47 to −53°C and caused the formation of extended cirrus layers. Our study is based on lidar observations over Limassol, Cyprus, from 27 October to 3 November 2020 when extended wildfire smoke fields crossed the Mediterranean Basin from Portugal to Cyprus. The observations suggest that the ice crystals were nucleated just below the tropopause in the presence of smoke particles serving as ice-nucleating particles (INPs). The main part of the 2-3 km thick smoke layer was,however, in the lower stratosphere just above the tropopause. With actual radiosonde observations of temperature and relative humidity and lidar-derived smoke particle surface area concentrations as starting values, gravity wave simulations show that lofting by 90-180 m is sufficient to initiate significant ice nucleation on the smoke particles, expressed in ice crystal number concentrations of 1-100 L−1The authors acknowledge the ‘EXCELSIOR’: ERATOSTHENES: EXcellence reseacrh Centre for Earth Surveillance and Space-Based Monitoring of the Environment H2020 Widespread Teaming project (www.excelsior2020.eu). The ‘EXCELSIOR’ project has received funding from the European Union’s Horizon 2020 research and innovation programme under Grant Agreement No 857510, from the Government of the Republic of Cyprus through the Directorate General for the European Programmes, Coordination and Development and the Cyprus University of Technology. The authors acknowledge support through the European Research Infrastructure for the observation of Aerosol, Clouds and Trace Gases ACTRIS under grant agreement no. 654109 and 739530 from the European Union’s Horizon 2020 research and innovation programme. The PollyXT-CYP was funded by the German Federal Ministry of Education and Research (BMBF) via the PoLiCyTa project (grant no. 1LK1603A).The study is supported by “ACCEPT” project (Prot. No: LOCALDEV-0008) co-financed by the Financial Mechanism of Norway (85%) and the Republic of Cyprus (15%) in the framework of the programming period 2014 - 2021. The lidar analysis on smoke-cirrus interaction was further supported by BMBF funding of the SCiAMO project (MOSAIC-FKZ 03F0915A). DAK acknowledges support by U.S. Department of Energy’s (DOE) Atmospheric System Research (ASR) program, Office of Biological and Environmental Research (OBER) (grant no. DE-SC0021034)

    The unprecedented 2017-2018 stratospheric smoke event : Decay phase and aerosol properties observed with the EARLINET

    Get PDF
    © Author(s) 2019. This open access work is distributed under the Creative Commons Attribution 4.0 License (https://creativecommons.org/licenses/by/4.0/).Six months of stratospheric aerosol observations with the European Aerosol Research Lidar Network (EARLINET) from August 2017 to January 2018 are presented. The decay phase of an unprecedented, record-breaking stratospheric perturbation caused by wildfire smoke is reported and discussed in terms of geometrical, optical, and microphysical aerosol properties. Enormous amounts of smoke were injected into the upper troposphere and lower stratosphere over fire areas in western Canada on 12 August 2017 during strong thunderstorm-pyrocumulonimbus activity. The stratospheric fire plumes spread over the entire Northern Hemisphere in the following weeks and months. Twenty-eight European lidar stations from northern Norway to southern Portugal and the eastern Mediterranean monitored the strong stratospheric perturbation on a continental scale. The main smoke layer (over central, western, southern, and eastern Europe) was found at heights between 15 and 20 km since September 2017 (about 2 weeks after entering the stratosphere). Thin layers of smoke were detected at heights of up to 22-23 km. The stratospheric aerosol optical thickness at 532 nm decreased from values > 0.25 on 21-23 August 2017 to 0.005-0.03 until 5-10 September and was mainly 0.003-0.004 from October to December 2017 and thus was still significantly above the stratospheric background (0.001-0.002). Stratospheric particle extinction coefficients (532 nm) were as high as 50-200 Mm-1 until the beginning of September and on the order of 1 Mm-1 (0.5- 5 Mm-1) from October 2017 until the end of January 2018. The corresponding layer mean particle mass concentration was on the order of 0.05-0.5 μg m-3 over these months. Soot particles (light-absorbing carbonaceous particles) are efficient ice-nucleating particles (INPs) at upper tropospheric (cirrus) temperatures and available to influence cirrus formation when entering the tropopause from above. We estimated INP concentrations of 50-500 L-1 until the first days in September and afterwards 5-50 L-1 until the end of the year 2017 in the lower stratosphere for typical cirrus formation temperatures of -55 ?C and an ice supersaturation level of 1.15. The measured profiles of the particle linear depolarization ratio indicated a predominance of nonspherical smoke particles. The 532 nm depolarization ratio decreased slowly with time in the main smoke layer from values of 0.15-0.25 (August-September) to values of 0.05-0.10 (October-November) and < 0.05 (December-January). The decrease of the depolarization ratio is consistent with aging of the smoke particles, growing of a coating around the solid black carbon core (aggregates), and thus change of the shape towards a spherical form. We found ascending aerosol layer features over the most southern European stations, especially over the eastern Mediterranean at 32-35? N, that ascended from heights of about 18-19 to 22-23 km from the beginning of October to the beginning of December 2017 (about 2 km per month). We discuss several transport and lifting mechanisms that may have had an impact on the found aerosol layering structures.Peer reviewe

    Relationship of extreme dry spells in eastern mediterranean with large-scale circulation

    No full text
    The relationship of prolonged dry spells in Eastern Mediterranean with large-scale surface and upper circulation is investigated on seasonal basis with the aid of the Singular-Value Decomposition Analysis (SVDA) for the period 1958-2000. The study was based on daily precipitation data of 56 stations, evenly distributed over Eastern Mediterranean region. Extreme dry spells are defined using the CDD index (maximum number of consecutive dry days). It was found that teleconnection patterns centered over Northern Atlantic and northern Europe seem to affect the duration of the longest dry spells over the Eastern Mediterranean, while surface synoptic scale systems in Northern Africa play a substantial role. The SVDA results compare well with the corresponding results of Canonical Correlation Analysis (CCA), mainly for the surface circulation during winter and summer
    corecore