34 research outputs found

    Fenomeni dispersivi e buona positura per NLS in dimensione 1

    Get PDF
    L'obiettivo di questo elaborato è verificare le stime dispersive e la buona positura della soluzione dell'equazione 1-dimensionale di Schroodinger con non linearità cubica

    The Multispecialistic da Vinci European BioBank

    Get PDF
    The da Vinci European BioBank (daVEB) is a research infrastructure established in 2009 in the Scientific Campus of the University of Florence (Sesto Fiorentino, Italy) belonging to the non-profit foundation FiorGen, which promotes studies aimed at exploiting knowledge on human health. Since 2011, daVEB is ISO9001 certified for collection, storage and distribution of biological samples and the associated data for scientific research. The biobank is currently storing about 9.000 biospecimens (serum, plasma, white cells, tissue, DNA, cells and urine) collected according to specific informed consents by Research Units from healthy donors and patients affected by different diseases - cardiovascular diseases, melanoma, breast carcinoma, non-Hodgkin’s lymphoma, cancer in geriatric patients, Krabbe syndrome, rare skin diseases; the biomaterial is available for new research projects.</p

    Synergistic effect of bioactive lipid and condition medium on cardiac differentiation of human mesenchymal stem cells from different tissues

    Get PDF
    Human umbilical cord mesenchymal stem cells (hUCMSCs) and human adipose tissue mesenchymal stem cells (hATMSCs) have the potential to differentiate into cardiomyocytes, making them promising therapeutic candidates for treating damaged cardiac tissues. Currently, however, the differentiated cells induced from hUCMSCs or hATMSCs can hardly display functional characteristics similar to cardiomyocytes. In this study, we have investigated the effects of bioactive lipid sphingosine‐1‐phosphate (S1P) on cardiac differentiations of hUCMSCs and hATMSCs in condition medium composed of cardiac myocytes culture medium or 5‐azacytidine. Cardiac differentiations were identified through immunofluorescence staining, and the results were observed with fluorescence microscopy and confocal microscopy. Synergistic effects of S1P and condition medium on cell viability were evaluated by MTT assays. Functional characteristics similar to cardiomyocytes were evaluated through detecting calcium transient. The differentiated hUCMSCs or hATMSCs in each group into cardiomyocytes showed positive expressions of cardiac specific proteins, including α‐actin, connexin‐43 and myosin heavy chain‐6 (MYH‐6). MTT assays showed that suitable differentiation time was 14 days and that the optimal concentration of S1P was 0.5 μM. Moreover, incorporation of S1P and cardiac myocytes culture medium gave rise to calcium transients, an important marker for displaying in vivo electrophysiological properties. This feature was not observed in the S1P‐5‐azacytidine group, indicating the possible lack of cellular stimuli such as transforming growth factor‐beta, TGF‐β

    Sphingosine 1-phosphate mediates proliferation and survival of mesoangioblasts

    No full text
    Mesoangioblasts are stem cells capable of differentiating in various mesodermal tissues and are presently regarded as suitable candidates for cell therapy of muscle degenerative diseases, as well as myocardial infarction. The enhancement of their proliferation and survival after injection in vivo could greatly improve their ability to repopulate damaged tissues. In this study, we show that the bioactive sphingolipid sphingosine 1-phosphate (S1P) regulates critical functions of mesoangioblast cell biology. S1P evoked a full mitogenic response in mesoangioblasts, measured by labeled thymidine incorporation and cell counting. Moreover, S1P strongly counteracted the apoptotic process triggered by stimuli as diverse as serum deprivation, C2-ceramide treatment, or staurosporine treatment, as assessed by cell counting, as well as histone-associated fragments and caspase-3 activity determinations. S1P acts both as an intracellular messenger and through specific membrane receptors. Real-time polymerase chain reaction analysis revealed that mesoangioblasts express the S1P-specific receptor S1P3 and, to a minor extent, S1P1 and S1P2. By using S1P receptor subtype-specific agonists and antagonists, we found that the proliferative response to S1P was mediated mainly by S1P2. By contrast, the antiapoptotic effect did not implicate S1P receptors. These findings demonstrate an important role of S1P in mesoangioblast proliferation and survival and indicate that targeting modulation of S1P-dependent signaling pathways may be used to improve the efficiency of muscle repair by these cells. Disclosure of potential conflicts of interest is found at the end of this article

    Sphingosine-1-Phosphate Mediates Proliferation Maintaining the Multipotency of Human Adult Bone Marrow and Adipose Tissue-derived Stem Cells

    No full text
    High renewal and maintenance of multipotency of human adult stem cells (hSCs), are a prerequisite for experimental analysis as well as for potential clinical usages. The most widely used strategy for hSC culture and proliferation is using serum. However, serum is poorly defined and has a considerable degree of inter-batch variation, which makes it difficult for large-scale mesenchymal stem cells (MSCs) expansion in homogeneous culture conditions. Moreover, it is often observed that cells grown in serum-containing media spontaneously differentiate into unknown and/or undesired phenotypes. Another way of maintaining hSC development is using cytokines and/or tissue-specific growth factors; this is a very expensive approach and can lead to early unwanted differentiation. In order to circumvent these issues, we investigated the role of sphingosine-1-phosphate (S1P), in the growth and multipotency maintenance of human bone marrow and adipose tissue-derived MSCs. We show that S1P induces growth, and in combination with reduced serum, or with the growth factors FGF and platelet-derived growth factor-AB, S1P has an enhancing effect on growth. We also show that the MSCs cultured in S1P-supplemented media are able to maintain their differentiation potential for at least as long as that for cells grown in the usual serum-containing media. This is shown by the ability of cells grown in S1P-containing media to be able to undergo osteogenic as well as adipogenic differentiation. This is of interest, since S1P is a relatively inexpensive natural product, which can be obtained in homogeneous high-purity batches: this will minimize costs and potentially reduce the unwanted side effects observed with serum. Taken together, S1P is able to induce proliferation while maintaining the multipotency of different human stem cells, suggesting a potential for S1P in developing serum-free or serum-reduced defined medium for adult stem cell culture
    corecore