113 research outputs found

    Does anxiety induced by social interaction influence the perception of bistable biological motion?

    Get PDF
    When observing point light walkers orthographically projected onto a frontoparallel plane, the direction in which they are walking is ambiguous. Nevertheless, observers more often perceive them as facing towards than as facing away from them. This phenomenon is known as the "facing-the-viewer bias" (FTV). Two interpretations of the facing-the-viewer bias exist in the literature: a top-down and a bottom-up interpretation. Support for the top-down interpretation comes from evidence that social anxiety correlates with the FTV bias. However, the direction of the relationship between the FTV bias and social anxiety is inconsistent across studies and evidence for a correlation has mostly been obtained with relatively small samples. Therefore, the first aim of the current study was to provide a strong test of the hypothesized relationship between social anxiety and the facing-the-viewer bias in a large sample of 200 participants recruited online. In addition, a second aim was to further extend top-down accounts by investigating if the FTV bias is also related to autistic traits. Our results replicate the FTV bias, showing that people indeed tend to perceive orthographically projected point light walkers as facing towards them. However, no correlation between the FTV bias and social interaction anxiety (tau = -0.01, p = .86, BF = 0.18) or autistic traits (tau = -0.0039, p = .45, BF = 0.18) was found. As such, our data cannot confirm the top-down interpretation of the facing-the-viewer bias

    Noninvasive Analysis of Synthetic and Decellularized Scaffolds for Heart Valve Tissue Engineering

    Get PDF
    Microcomputed tomography (mu-CT) is a nondestructive, high-resolution, three-dimensional method of analyzing objects. The aim of this study was to evaluate the feasibility of using mu-CT as a noninvasive method of evaluation for tissue-engineering applications. The polyurethane aortic heart valve scaffold was produced using a spraying technique. Cryopreserved/thawed homograft and biological heart valve were decellularized using a detergent mixture. Human endothelial cells and fibroblasts were derived from saphenous vein segments and were verified by immunocytochemistry. Heart valves were initially seeded with fibroblasts followed by colonization with endothelial cells. Scaffolds were scanned by a mu-CT scanner before and after decellularization as well as after cell seeding. Successful colonization was additionally determined by scanning electron microscopy (SEM) and immunohistochemistry (IHC). Microcomputed tomography accurately visualized the complex geometry of heart valves. Moreover, an increase in the total volume and wall thickness as well as a decrease in total surface was demonstrated after seeding. A confluent cell distribution on the heart valves after seeding was confirmed by SEM and IHC. We conclude that mu-CT is a new promising noninvasive method for qualitative and quantitative analysis of tissue-engineering processes. ASAIO Journal 2013;59:169-177

    Reliability of 3D planning and simulations of medial open wedge high tibial osteotomies

    Get PDF
    Purpose: In medial open-wedge high tibial osteotomy (HTO) hinge axis and osteotomy plane influence the resulting anatomy, but accurate angular quantifications using 3D-planning-simulations are lacking. The objectives of this study were developing a standardized and validated 3D-planning method of an HTO and to perform several simulated realignments to explain unintended anatomy changes. Methods: The cutting direction of the main osteotomy was defined parallel to the medial tibial slope and the hinge axis 1.5 cm distal to the lateral plateau. For interobserver testing, this 3D planning was performed on 13 digital models of human tibiae by two observers. In addition, four different hinge axis positions and five differently inclined osteotomy planes each were simulated. The osteotomy direction ranged from medial 0°–30° anteromedial, while the tilt of the osteotomy plane compared to the tibial plateau was −10° to +10°. All anatomic angular changes were calculated using 3D analysis. Results: Multiple HTO plannings by two medical investigators using standardized procedures showed only minimal differences. In the 3D-simulation, each 10° rotation of the hinge axis resulted in a 1.7° significant increase in slope. Tilting the osteotomy plane by 10° resulted in significant torsional changes of 2°, in addition to minor but significant changes in the medial proximal tibial angle (MPTA). Conclusion: Standardized 3D-planning of the HTO can be performed with high reliability using two-observer planning. 3D-simulations suggest that control of the osteotomy plane is highly relevant to avoid unintended changes in the resulting anatomy, but this can be a helpful tool to modify specific angles in different pathologies in the HTO

    SLAM‐Drop‐seq reveals mRNA kinetic rates throughout the cell cycle

    Get PDF
    RNA abundance is tightly regulated in eukaryotic cells by modulating the kinetic rates of RNA production, processing, and degradation. To date, little is known about time‐dependent kinetic rates during dynamic processes. Here, we present SLAM‐Drop‐seq, a method that combines RNA metabolic labeling and alkylation of modified nucleotides in methanol‐fixed cells with droplet‐based sequencing to detect newly synthesized and preexisting mRNAs in single cells. As a first application, we sequenced 7280 HEK293 cells and calculated gene‐specific kinetic rates during the cell cycle using the novel package Eskrate. Of the 377 robust‐cycling genes that we identified, only a minor fraction is regulated solely by either dynamic transcription or degradation (6 and 4%, respectively). By contrast, the vast majority (89%) exhibit dynamically regulated transcription and degradation rates during the cell cycle. Our study thus shows that temporally regulated mRNA degradation is fundamental for the correct expression of a majority of cycling genes. SLAM‐Drop‐seq, combined with Eskrate, is a powerful approach to understanding the underlying mRNA kinetics of single‐cell gene expression dynamics in continuous biological processes.Peer Reviewe

    Precision 3D‐printed cell scaffolds mimicking native tissue composition and mechanics

    Get PDF
    Cellular dynamics are modeled by the 3D architecture and mechanics of the extracellular matrix (ECM) and vice versa. These bidirectional cell‐ECM interactions are the basis for all vital tissues, many of which have been investigated in 2D environments over the last decades. Experimental approaches to mimic in vivo cell niches in 3D with the highest biological conformity and resolution can enable new insights into these cell‐ECM interactions including proliferation, differentiation, migration, and invasion assays. Here, two‐photon stereolithography is adopted to print up to mm‐sized high‐precision 3D cell scaffolds at micrometer resolution with defined mechanical properties from protein‐based resins, such as bovine serum albumin or gelatin methacryloyl. By modifying the manufacturing process including two‐pass printing or post‐print crosslinking, high precision scaffolds with varying Young's moduli ranging from 7‐300 kPa are printed and quantified through atomic force microscopy. The impact of varying scaffold topographies on the dynamics of colonizing cells is observed using mouse myoblast cells and a 3D‐lung microtissue replica colonized with primary human lung fibroblast. This approach will allow for a systematic investigation of single‐cell and tissue dynamics in response to defined mechanical and bio‐molecular cues and is ultimately scalable to full organs

    Decompressive craniectomy plus best medical treatment versus best medical treatment alone for spontaneous severe deep supratentorial intracerebral haemorrhage:a randomised controlled clinical trial

    Get PDF
    BACKGROUND: It is unknown whether decompressive craniectomy improves clinical outcome for people with spontaneous severe deep intracerebral haemorrhage. The SWITCH trial aimed to assess whether decompressive craniectomy plus best medical treatment in these patients improves outcome at 6 months compared to best medical treatment alone.METHODS: In this multicentre, randomised, open-label, assessor-blinded trial conducted in 42 stroke centres in Austria, Belgium, Finland, France, Germany, the Netherlands, Spain, Sweden, and Switzerland, adults (18-75 years) with a severe intracerebral haemorrhage involving the basal ganglia or thalamus were randomly assigned to receive either decompressive craniectomy plus best medical treatment or best medical treatment alone. The primary outcome was a score of 5-6 on the modified Rankin Scale (mRS) at 180 days, analysed in the intention-to-treat population. This trial is registered with ClincalTrials.gov, NCT02258919, and is completed.FINDINGS: SWITCH had to be stopped early due to lack of funding. Between Oct 6, 2014, and April 4, 2023, 201 individuals were randomly assigned and 197 gave delayed informed consent (96 decompressive craniectomy plus best medical treatment, 101 best medical treatment). 63 (32%) were women and 134 (68%) men, the median age was 61 years (IQR 51-68), and the median haematoma volume 57 mL (IQR 44-74). 42 (44%) of 95 participants assigned to decompressive craniectomy plus best medical treatment and 55 (58%) assigned to best medical treatment alone had an mRS of 5-6 at 180 days (adjusted risk ratio [aRR] 0·77, 95% CI 0·59 to 1·01, adjusted risk difference [aRD] -13%, 95% CI -26 to 0, p=0·057). In the per-protocol analysis, 36 (47%) of 77 participants in the decompressive craniectomy plus best medical treatment group and 44 (60%) of 73 in the best medical treatment alone group had an mRS of 5-6 (aRR 0·76, 95% CI 0·58 to 1·00, aRD -15%, 95% CI -28 to 0). Severe adverse events occurred in 42 (41%) of 103 participants receiving decompressive craniectomy plus best medical treatment and 41 (44%) of 94 receiving best medical treatment.INTERPRETATION: SWITCH provides weak evidence that decompressive craniectomy plus best medical treatment might be superior to best medical treatment alone in people with severe deep intracerebral haemorrhage. The results do not apply to intracerebral haemorrhage in other locations, and survival is associated with severe disability in both groups.FUNDING: Swiss National Science Foundation, Swiss Heart Foundation, Inselspital Stiftung, and Boehringer Ingelheim.</p

    Decompressive craniectomy plus best medical treatment versus best medical treatment alone for spontaneous severe deep supratentorial intracerebral haemorrhage: a randomised controlled clinical trial

    Get PDF
    Background It is unknown whether decompressive craniectomy improves clinical outcome for people with spontaneous severe deep intracerebral haemorrhage. The SWITCH trial aimed to assess whether decompressive craniectomy plus best medical treatment in these patients improves outcome at 6 months compared to best medical treatment alone. Methods In this multicentre, randomised, open-label, assessor-blinded trial conducted in 42 stroke centres in Austria, Belgium, Finland, France, Germany, the Netherlands, Spain, Sweden, and Switzerland, adults (18–75 years) with a severe intracerebral haemorrhage involving the basal ganglia or thalamus were randomly assigned to receive either decompressive craniectomy plus best medical treatment or best medical treatment alone. The primary outcome was a score of 5–6 on the modified Rankin Scale (mRS) at 180 days, analysed in the intention-to-treat population. This trial is registered with ClincalTrials.gov , NCT02258919 , and is completed. Findings SWITCH had to be stopped early due to lack of funding. Between Oct 6, 2014, and April 4, 2023, 201 individuals were randomly assigned and 197 gave delayed informed consent (96 decompressive craniectomy plus best medical treatment, 101 best medical treatment). 63 (32%) were women and 134 (68%) men, the median age was 61 years (IQR 51–68), and the median haematoma volume 57 mL (IQR 44–74). 42 (44%) of 95 participants assigned to decompressive craniectomy plus best medical treatment and 55 (58%) assigned to best medical treatment alone had an mRS of 5–6 at 180 days (adjusted risk ratio [aRR] 0·77, 95% CI 0·59 to 1·01, adjusted risk difference [aRD] −13%, 95% CI −26 to 0, p=0·057). In the per-protocol analysis, 36 (47%) of 77 participants in the decompressive craniectomy plus best medical treatment group and 44 (60%) of 73 in the best medical treatment alone group had an mRS of 5–6 (aRR 0·76, 95% CI 0·58 to 1·00, aRD −15%, 95% CI −28 to 0). Severe adverse events occurred in 42 (41%) of 103 participants receiving decompressive craniectomy plus best medical treatment and 41 (44%) of 94 receiving best medical treatment. Interpretation SWITCH provides weak evidence that decompressive craniectomy plus best medical treatment might be superior to best medical treatment alone in people with severe deep intracerebral haemorrhage. The results do not apply to intracerebral haemorrhage in other locations, and survival is associated with severe disability in both groups. Funding Swiss National Science Foundation, Swiss Heart Foundation, Inselspital Stiftung, and Boehringer Ingelheim
    corecore