85 research outputs found

    The role of predation and food limitation on claims for compensation, reindeer demography and population dynamics

    Get PDF
    1.A major challenge in biodiversity conservation is to facilitate viable populations of large apex predators in ecosystems where they were recently driven to ecological extinction due to resource conflict with humans. 2. Monetary compensation for losses of livestock due to predation is currently a key instrument to encourage human–carnivore coexistence. However, a lack of quantitative estimates of livestock losses due to predation leads to disagreement over the practise of compensation payments. This disagreement sustains the human–carnivore conflict. 3. The level of depredation on year-round, free-ranging, semi-domestic reindeer by large carnivores in Fennoscandia has been widely debated over several decades. In Norway, the reindeer herders claim that lynx and wolverine cause losses of tens of thousands of animals annually and cause negative population growth in herds. Conversely, previous research has suggested that monetary predator compensation can result in positive population growth in the husbandry, with cascading negative effects of high grazer densities on the biodiversity in tundra ecosystems. 4. We utilized a long-term, large-scale dataset to estimate the relative importance of lynx and wolverine predation and density-dependent and climatic food limitation on claims for losses, recruitment and population growth rates in Norwegian reindeer husbandry. 5. Claims of losses increased with increasing predator densities, but with no detectable effect on population growth rates. Density-dependent and climatic effects on claims of losses, recruitment and population growth rates, were much stronger than the effects of variation in lynx and wolverine densities. 6. Synthesis and applications. Our analysis provides a quantitative basis for predator compensation and estimation of the costs of reintroducing lynx and wolverine in areas with free-ranging semidomestic reindeer. We outline a potential path for conflict management which involves adaptive monitoring programs, open access to data, herder involvement, and development of management strategy evaluation (MSE) models to disentangle complex responses including multiple stakeholders and individual harvester decisions. depredation, human–carnivore conflict, MODIS, onset of spring, plant productivity, predator compensation, Rangife

    In-situ Temperature Stations Elucidate Species’ Phenological Responses to Climate in the Alps, but Meteorological and Snow Reanalysis Facilitates Broad Scale and Long-Term Studies

    Get PDF
    Linking climate variability and change to the phenological response of species is particularly challenging in the context of mountainous terrain. In these environments, elevation and topography lead to a diversity of bioclimatic conditions at fine scales affecting species distribution and phenology. In order to quantify in situ climate conditions for mountain plants, the CREA (Research Center for Alpine Ecosystems) installed 82 temperature stations throughout the southwestern Alps, at different elevations and aspects. Dataloggers at each station provide local measurements of temperature at four heights (5 cm below the soil surface, at the soil surface, 30 cm above the soil surface, and 2 m above ground). Given the significant amount of effort required for station installation and maintenance, we tested whether meteorological data based on the S2M reanalysis could be used instead of station data. Comparison of the two datasets showed that some climate indices, including snow melt-out date and a heat wave index, can vary significantly according to data origin. More general indices such as daily temperature averages were more consistent across datasets, while threshold-based temperature indices showed somewhat lower agreement. Over a 12 year period, the phenological responses of four mountain tree species (ash (Fraxinus excelsior), spruce (Picea abies), hazel (Corylus avellana), birch (Betula pendula)), coal tits (Periparus ater) and common frogs (Rana temporaria) to climate variability were better explained, from both a statistical and ecological standpoint, by indices derived from field stations. Reanalysis data out-performed station data, however, for predicting larch (Larix decidua) budburst date. Overall, our study indicates that the choice of dataset for phenological monitoring ultimately depends on target bioclimatic variables and species, and also on the spatial and temporal scale of the study

    Not only mosses: lemming winter diets as described by DNA metabarcoding

    Get PDF
    This is a post-peer-review, pre-copyedit version of an article published in Polar Biology. The final authenticated version is available online at: http://dx.doi.org/10.1007/s00300-017-2114-3. The temporal dynamics of most tundra food webs are shaped by the cyclic population dynamics of lemmings. While processes during winter may be behind the recent disruptions of lemming cycles, lemming winter ecology is poorly known. We present here the first DNA metabarcoding data on the winter diet of Norwegian lemmings (Lemmus lemmus), based on feces collected after a winter of population increase. Prostrate willows, mosses, and graminoids dominated the species winter diet, indicating that the conventional idea of lemmings as moss‐specialists should be revised. The behavior of lemming‐plant models in theoretical studies is conditional on the assumptions of mosses being their main winter food item. As shrubs have been excluded from the framework of these models, incorporating them in future modeling studies should nuance our understanding on how plants affect lemmings. We also sampled diet of a few individuals found dead on top of the snow. These individuals had relatively empty stomachs and had, prior to death, relied heavily on mosses. This apparent lack of abundant good quality indicates spatial heterogeneity in local food availability during the population increase phase

    A screening for canine distemper virus, canine adenovirus and carnivore protoparvoviruses in Arctic foxes (Vulpes lagopus) and red foxes (Vulpes vulpes) from Arctic and sub-Arctic regions of Norway

    Get PDF
    Source at https://doi.org/10.1080/17518369.2018.1498678 .Canine distemper virus (CDV), canine adenovirus (CAdV) and canine parvovirus type 2 (CPV-2) cause disease in dogs (Canis familiaris). These, or closely related viruses, may also infect wild carnivores. The aim of this study was to investigate exposure to CDV, CAdV and CPV-2 among fox populations in Norway. Arctic foxes (n = 178) from High-Arctic Svalbard were investigated for antibodies against CDV. Arctic foxes (n = 301) from Svalbard and red foxes from LowArctic (n = 326) and sub-Arctic (n = 74) regions in Finnmark County, Norway, were investigated for antibodies against CAdV and for the presence of carnivore protoparvovirus DNA in spleen and mesenteric lymph nodes using polymerase chain reaction. Seroprevalence against CDV in Arctic foxes decreased from 25% (1995/96) to 6% (2001/02), whereas the seroprevalence against CAdV increased from 25–40% during the seasons 1995/96 to 2001/02 to 68% for the last study year (2002/03). In red foxes, the seroprevalence against CAdV varied between 31% and 67% for the seasons 2004/05 to 2007/08, increasing to 80% for the last study year. Carnivore protoparvovirus DNA was not detected in any of the 301 Arctic foxes and the 265 red foxes investigated. These results show that CDV and CAdV are enzootic in the Arctic fox population (Svalbard), and that CAdV is enzootic in both the Low-Arctic and subArctic red fox populations (Finnmark). Further studies are needed to better understand the infection biology and the impact of CDV and CAdV in these fox populations, and if viruses may be shared between foxes and other carnivores, including dogs

    Sources of variation in small rodent trophic niche: New insights from DNA metabarcoding and stable isotope analysis

    Get PDF
    Intraspecific competition for food is expected to increase the trophic niche width of consumers, defined here as their diet diversity, but this process has been little studied in herbivores. Population densities of small rodents fluctuate greatly, providing a good study model to evaluate effects of competition on trophic niche. We studied resource use in five arctic small rodent populations of four species combining DNA metabarcoding of stomach contents and stable isotope analysis (SIA). Our results suggest that for small rodents, the most pronounced effect of competition on trophic niche is due to increased use of secondary habitats and to habitat-specific diets, rather than an expansion of trophic niche in primary habitat. DNA metabarcoding and SIA provided complementary information about the composition and temporal variation of herbivore diets. Combing these two approaches requires caution, as the underlying processes causing observed patterns may differ between methodologies due to different spatiotemporal scales. The final version of this research has been published in Isotopes in Environmental and Health Studies. Š 2014 Taylor & Franci

    Highly overlapping winter diet in two sympatric lemming species revealed by DNA metabarcoding

    Get PDF
    Sympatric species are expected to minimize competition by partitioning resources, especially when these are limited. Herbivores inhabiting the High Arctic in winter are a prime example of a situation where food availability is anticipated to be low, and thus reduced diet overlap is expected. We present here the first assessment of diet overlap of high arctic lemmings during winter based on DNA metabarcoding of feces. In contrast to previous analyses based on microhistology, we found that the diets of both collared (Dicrostonyx groenlandicus) and brown lemmings (Lemmus trimucronatus) on Bylot Island were dominated by Salix while mosses, which were significantly consumed only by the brown lemming, were a relatively minor food item. The most abundant plant taxon, Cassiope tetragona, which alone composes more than 50% of the available plant biomass, was not detected in feces and can thus be considered to be non-food. Most plant taxa that were identified as food items were consumed in proportion to their availability and none were clearly selected for. The resulting high diet overlap, together with a lack of habitat segregation, indicates a high potential for resource competition between the two lemming species. However, Salix is abundant in the winter habitats of lemmings on Bylot Island and the nonSalix portion of the diets differed between the two species. Also, lemming grazing impact on vegetation during winter in the study area is negligible. Hence, it seems likely that the high potential for resource competition predicted between these two species did not translate into actual competition. This illustrates that even in environments with low primary productivity food resources do not necessarily generate strong competition among herbivores
    • …
    corecore