116 research outputs found

    The Impact of miRNA Target Sites in Coding Sequences and in 3′UTRs

    Get PDF
    Animal miRNAs are a large class of small regulatory RNAs that are known to directly and negatively regulate the expression of a large fraction of all protein encoding genes. The identification and characterization of miRNA targets is thus a fundamental problem in biology. miRNAs regulate target genes by binding to 3′ untranslated regions (3′UTRs) of target mRNAs, and multiple binding sites for the same miRNA in 3′UTRs can strongly enhance the degree of regulation. Recent experiments have demonstrated that a large fraction of miRNA binding sites reside in coding sequences. Overall, miRNA binding sites in coding regions were shown to mediate smaller regulation than 3′UTR binding. However, possible interactions between target sites in coding sequences and 3′UTRs have not been studied. Using transcriptomics and proteomics data of ten miRNA mis-expression experiments as well as transcriptome-wide experimentally identified miRNA target sites, we found that mRNA and protein expression of genes containing target sites both in coding regions and 3′UTRs were in general mildly but significantly more regulated than those containing target sites in 3′UTRs only. These effects were stronger for conserved target sites of length 7–8 nt in coding regions compared to non-conserved sites. Combined with our other finding that miRNA target sites in coding regions are under negative selection, our results shed light on the functional importance of miRNA targeting in coding regions

    Obesity treatment—more than food and exercise: a qualitative study exploring obese adolescents' and their parents' views on the former's obesity

    Get PDF
    The aim of this study was to explore obese adolescents’ and their parents’ views on the former's obesity; especially to gain knowledge about barriers and motivational factors that influence obese adolescents’ ability to lose weight. This is a qualitative study involving field observation and semi-structured interviews with obese adolescents and their parents. The analysis takes a phenomenological–hermeneutic approach. Fifteen obese adolescents aged 13–16 years and their parents/grandparents participated in this study (one father, seven mothers, five sets of parents and two sets of grandparents). The results showed that obese adolescents’ are aware that they have unhealthy eating habits and they wish they were able to attain to a healthier diet. Although in poor physical shape, obese adolescents perceive their daily level of exercise as moderate. Obese adolescents blame themselves for being obese and blame their parents for an unhealthy diet, and for being unsupportive regarding exercise. Parents blame their obese child of lacking will power to change eating and exercise habits. As a consequence, the homely atmosphere is often characterised by quarrels and negative feelings. The conclusion is that despite obese adolescents’ intention of reducing weight, underlying issues interfere with this goal. This is particularly related to quarrels with parents, self-blame and misguided understanding of eating and exercising habits. These matters need to be addressed when treating obesity among adolescents

    Is there an association between depressive and urinary symptoms during and after pregnancy?

    Get PDF
    Depressive symptoms and urinary symptoms are both highly prevalent in pregnancy. In the general population, an association is reported between urinary symptoms and depressive symptoms. The association of depressive and urinary symptoms has not yet been assessed in pregnancy. In this study, we assessed (1) the prevalence of depressive symptoms, over-active bladder (OAB) syndrome, urge urinary incontinence (UUI) and stress urinary incontinence (SUI) during and after pregnancy using the Center for Epidemiologic Studies Depression Scale (CES-D) and the Urogenital Distress Inventory (UDI) and (2) the association of depressive symptoms with urinary incontinence and over-active bladder syndrome during and after pregnancy, controlling for confounding socioeconomic, psychosocial, behavioural and biomedical factors in a cohort of healthy nulliparous women. Our data show a significant increase in prevalence of depressive symptoms, UUI, SUI and OAB during pregnancy and a significant reduction in prevalence of depressive symptoms, SUI and OAB after childbirth. UUI prevalence did not significantly decrease after childbirth. In univariate analysis, urinary incontinence and the OAB syndrome were significantly associated with a CES-D score indicative of a possible clinical depression at 36 weeks gestation. However, after adjusting for possible confounding factors, only the OAB syndrome remained significantly associated (OR 4.4 [1.8–10.5]). No association was found between depressive and urinary symptoms at 1 year post-partum. Only OAB was independently associated with depressive symptoms during pregnancy. Possible explanations for this association are discussed

    Increasing incidence of childhood tumours of the central nervous system in Denmark, 1980–1996

    Get PDF
    The registered incidence rate of childhood central nervous system (CNS) tumours has increased in several countries. It is uncertain whether these increases are biologically real or owing to improved diagnostic methods. We explored the medical records of 626 CNS tumours diagnosed in Danish children between 1980 and 1996. Population-based registers were used to extract data on mortality and background population. Temporal patterns were analysed by regression techniques. Most tumours were verified by computed tomography (78%) or magnetic resonance imaging (14%). Overall, the incidence rate increased by 2.9% per year (95% confidence interval (CI): 1.3;4.5) and the mortality rate increased by 1.4% per year (95% CI: −0.4;3.3). Among children aged 0–4 years, the survival rate after diagnosis remained almost unchanged, whereas among children aged 5–14 years, the 10-year survival rate improved from 59 to 74%. These data suggest that the incidence rate of CNS tumours among Danish children has truly increased, although alternative explanations cannot be excluded

    Discovery of Porcine microRNAs in Multiple Tissues by a Solexa Deep Sequencing Approach

    Get PDF
    The domestic pig (Sus scrofa) is an important economic animal for meat production and as a suitable model organism for comparative genomics and biomedical studies. In an effort to gain further identification of miRNAs in the pig, we have applied the Illumina Solexa sequencing technology to carry out an in-depth analysis of the miRNA transcriptome in a pool of equal amounts of RNA from 16 different porcine tissues. From this data set, we identified 437 conserved and 86 candidate novel miRNA/miRNA* in the pig, corresponding to 329 miRNA genes. Compared with all the reported porcine miRNAs, the result showed that 112 conserved and 61 candidate novel porcine miRNA were first reported in this study. Further analysis revealed extensive sequence variations (isomiRs) of porcine miRNAs, including terminal isomiRs at both the 5′ and 3′ ends and nucleotide variants. Read counts of individual porcine miRNA spanned from a few reads to approximately 405541 reads, confirming the different level of expression of porcine miRNAs. Subsequently, the tissue expression patterns of 8 miRNAs were characterized by Northern blotting. The results showed that miR-145, miR-423-5p, miR-320, miR-26a, and miR-191 are ubiquitously expressed in diverse tissues, while miR-92, miR-200a, and miR-375 were selectively enriched and expressed in special tissues. Meanwhile, the expression of 8 novel porcine-specific miRNAs was validated by stem-loop RT-PCR, and one of these was detected by Northern blotting. Using the porcine miRNA array designed according to our Solexa results, 123 miRNAs were detected expression in porcine liver tissues. A total of 58 miRNAs showed differential expression between the Tongcheng (a Chinese indigenous fatty breed) and Large White pig breeds (a lean type pig). Taken together, our results add new information to existing data on porcine miRNAs and should be useful for investigating the biological functions of miRNAs in pig and other species

    Planck 2013 results. IX. HFI spectral response

    Get PDF
    The Planck High Frequency Instrument (HFI) spectral response was determined through a series of ground based tests conducted with the HFI focal plane in a cryogenic environment prior to launch. The main goal of the spectral transmission tests was to measure the relative spectral response (including out-of-band signal rejection) of all HFI detectors. This was determined by measuring the output of a continuously scanned Fourier transform spectrometer coupled with all HFI detectors. As there is no on-board spectrometer within HFI, the ground-based spectral response experiments provide the definitive data set for the relative spectral calibration of the HFI. The spectral response of the HFI is used in Planck data analysis and component separation, this includes extraction of CO emission observed within Planck bands, dust emission, Sunyaev-Zeldovich sources, and intensity to polarization leakage. The HFI spectral response data have also been used to provide unit conversion and colour correction analysis tools. Verifications of the HFI spectral response data are provided through comparisons with photometric HFI flight data. This validation includes use of HFI zodiacal emission observations to demonstrate out-of-band spectral signal rejection better than 10^8. The accuracy of the HFI relative spectral response data is verified through comparison with complementary flight-data based unit conversion coefficients and colour correction coefficients. These coefficients include those based upon HFI observations of CO, dust, and Sunyaev-Zeldovich emission. General agreement is observed between the ground-based spectral characterization of HFI and corresponding in-flight observations, within the quoted uncertainty of each; explanations are provided for any discrepancies.Comment: 27 pages, 28 figures, one of the papers associated with the 2013 Planck data releas

    Molecular Signatures Reveal Circadian Clocks May Orchestrate the Homeorhetic Response to Lactation

    Get PDF
    Genes associated with lactation evolved more slowly than other genes in the mammalian genome. Higher conservation of milk and mammary genes suggest that species variation in milk composition is due in part to the environment and that we must look deeper into the genome for regulation of lactation. At the onset of lactation, metabolic changes are coordinated among multiple tissues through the endocrine system to accommodate the increased demand for nutrients and energy while allowing the animal to remain in homeostasis. This process is known as homeorhesis. Homeorhetic adaptation to lactation has been extensively described; however how these adaptations are orchestrated among multiple tissues remains elusive. To develop a clearer picture of how gene expression is coordinated across multiple tissues during the pregnancy to lactation transition, total RNA was isolated from mammary, liver and adipose tissues collected from rat dams (n = 5) on day 20 of pregnancy and day 1 of lactation, and gene expression was measured using Affymetrix GeneChips. Two types of gene expression analysis were performed. Genes that were differentially expressed between days within a tissue were identified with linear regression, and univariate regression was used to identify genes commonly up-regulated and down-regulated across all tissues. Gene set enrichment analysis showed genes commonly up regulated among the three tissues enriched gene ontologies primary metabolic processes, macromolecular complex assembly and negative regulation of apoptosis ontologies. Genes enriched in transcription regulator activity showed the common up regulation of 2 core molecular clock genes, ARNTL and CLOCK. Commonly down regulated genes enriched Rhythmic process and included: NR1D1, DBP, BHLHB2, OPN4, and HTR7, which regulate intracellular circadian rhythms. Changes in mammary, liver and adipose transcriptomes at the onset of lactation illustrate the complexity of homeorhetic adaptations and suggest that these changes are coordinated through molecular clocks
    corecore