67 research outputs found
Recommended from our members
Release of Bioactive Molecules from Graphene Oxide-Alginate Hybrid Hydrogels: Effect of Crosslinking Method
To investigate the influence of crosslinking methods on the releasing performance of hybrid hydrogels, we synthesized two systems consisting of Graphene oxide (GO) as a functional element and alginate as polymer counterpart by means of ionic gelation (physical method, −) and radical polymerization (chemical method, −). Formulations were optimized to maximize the GO content (2.0 and 1.15% for − and −, respectively) and Curcumin (CUR) was loaded as a model drug at 2.5, 5.0, and 7.5% (by weight). The physico-chemical characterization confirmed the homogeneous incorporation of GO within the polymer network and the enhanced thermal stability of hybrid vs. blank hydrogels. The determination of swelling profiles showed a higher swelling degree for − and a marked pH responsivity due to the COOH functionalities. Moreover, the application of external voltages modified the water affinity of −, while they accelerated the degradation of − due to the disruption of the crosslinking points and the partial dissolution of alginate. The evaluation of release profiles, extensively analysed by the application of semi-empirical mathematical models, showed a sustained release from hybrid hydrogels, and the possibility to modulate the releasing amount and rate by electro-stimulation of −
Dual-Targeted Hyaluronic Acid/Albumin Micelle-Like Nanoparticles for the Vectorization of Doxorubicin
Drug targeting of tumor cells is one of the great challenges in cancer therapy; nanoparticles based on natural polymers represent valuable tools to achieve this aim. The ability to respond to environmental signals from the pathological site (e.g., altered redox potential), together with the specific interaction with membrane receptors overexpressed on cancer cells membrane (e.g., CD44 receptors), represent the main features of actively targeted nanoparticles. In this work, redox-responsive micelle-like nanoparticles were prepared by self-assembling of a hyaluronic acid–human serum albumin conjugate containing cystamine moieties acting as a functional spacer. The conjugation procedure consisted of a reductive amination step of hyaluronic acid followed by condensation with albumin. After self-assembling, nanoparticles with a mean size of 70 nm and able to be destabilized in reducing media were obtained. Doxorubicin-loaded nanoparticles modulated drug release rate in response to different redox conditions. Finally, the viability and uptake experiments on healthy (BALB-3T3) and metastatic cancer (MDA-MB-231) cells proved the potential applicability of the proposed system as a drug vector in cancer therapyL.D.-G. acknowledges Consellería de Cultura, Educación e Ordenación Universitaria for a postdoctoral fellowship (Xunta de Galicia, Spain; ED481B 2017/063)S
Carbon Nanohorns as Effective Nanotherapeutics in Cancer Therapy
Different carbon nanostructures have been explored as functional materials for the development of effective nanomaterials in cancer treatment applications. This review mainly aims to discuss the features, either strength or weakness, of carbon nanohorn (CNH), carbon conical horn-shaped nanostructures of sp2 carbon atoms. The interest for these materials arises from their ability to couple the clinically relevant properties of carbon nanomaterials as drug carriers with the negligible toxicity described in vivo. Here, we offer a comprehensive overview of the recent advances in the use of CNH in cancer treatments, underlining the benefits of each functionalization route and approach, as well as the biological performances of either loaded and unloaded materials, while discussing the importance of delivery devices
Carbon Nanotubes Hybrid Hydrogels for Environmental Remediation: Evaluation of Adsorption Efficiency under Electric Field
The performance of Carbon Nanotubes hybrid hydrogels for environmental remediation was investigated using Methylene Blue (MB), Rhodamine B (RD), and Bengal Rose (BR) as model contaminating dyes. An acrylate hydrogel network with incorporated CNT was synthesized by photo-polymerization without any preliminary derivatization of CNT surface. Thermodynamics, isothermal and kinetic studies showed favorable sorption processes with the application of an external 12 V electric field found to be able to influence the amount of adsorbed dyes: stronger interactions with cationic MB molecules (qexp and q12exp of 19.72 and 33.45 mg g−1, respectively) and reduced affinity for anionic RD (qexp and q12exp of 28.93 and 13.06 mg g−1, respectively) and neutral BR (qexp and q12exp of 36.75 and 15.85 mg g−1, respectively) molecules were recorded. The influence of pH variation on dyes adsorption was finally highlighted by reusability studies, with the negligible variation of adsorption capacity after five repeated sorption cycles claiming for the suitability of the proposed systems as effective sorbent for wastewater treatment
Recent advances in the synthesis and biomedical applications of nanocomposite hydrogels
Hydrogels sensitive to electric current are usually made of polyelectrolytes and undergo erosion, swelling, de-swelling or bending in the presence of an applied electric field. The electrical conductivity of many polymeric materials used for the fabrication of biomedical devices is not high enough to achieve an effective modulation of the functional properties, and thus, the incorporation of conducting materials (e.g., carbon nanotubes and nanographene oxide) was proposed as a valuable approach to overcome this limitation. By coupling the biological and chemical features of both natural and synthetic polymers with the favourable properties of carbon nanostructures (e.g., cellular uptake, electromagnetic and magnetic behaviour), it is possible to produce highly versatile and effective nanocomposite materials. In the present review, the recent advances in the synthesis and biomedical applications of electro-responsive nanocomposite hydrogels are discussed
Drug-in-cyclodextrin-in-polymeric nanoparticles: A promising strategy for rifampicin administration
The aim of this work was to develop novel chitosan (CH) based nanoparticles (NPs) for rifampicin (RIF) delivery. RIF, a lipophilic molecule, was incorporated inside NPs as a complex with an anionic cyclodextrin, sulphobutylether-β-cyclodextrin (SBE-β-CD). NPs were then prepared through the ionic gelation method by exploiting the interaction between CH and SBE-β-CD-RIF complex (CH/SBE-β-CD-RIF NPs), possibly in the presence of other crosslinkers, like carboxymethylcellulose (CH/SBE-β-CD-RIF/CMC NPs) and pentasodium tripolyphosphate (CH/SBE-β-CD-RIF/TPP NPs). NPs were then characterized for their size, ζ-potential, morphology, yield, drug loading, stability, mucoadhesion, in vitro drug release and antimicrobial activity. Results demonstrated that the functional properties of loaded NPs, like their size, ζ-potential, and stability, varied on the basis of the CH/crosslinker weight ratio. Interestingly, all the developed NPs had a round shape and were characterized by high yield values and mucoadhesive properties. Among them, NPs based on CH/SBE-β-CD-RIF and CH/SBE-β-CD-RIF/CMC have gained high drug loading, provided a sustained release of RIF and showed the best antimicrobial activity. Thus, both types of NPs may be considered as promising nanocarriers for the release of RIF
Green synthesis of privileged benzimidazole scaffolds using active deep eutectic solvent
The exploitation and use of alternative synthetic methods, in the face of classical procedures that do not conform to the ethics of green chemistry, represent an ever-present problem in the pharmaceutical industry. The procedures for the synthesis of benzimidazoles have become a focus in synthetic organic chemistry, as they are building blocks of strong interest for the development of compounds with pharmacological activity. Various benzimidazole derivatives exhibit important activities such as antimicrobial, antiviral, anti-inflammatory, and analgesic activities, and some of the already synthesized compounds have found very strong applications in medicine praxis. Here we report a selective and sustainable method for the synthesis of 1,2-disubstituted or 2-substituted benzimidazoles, starting from o-phenylenediamine in the presence of different aldehydes. The use of deep eutectic solvent (DES), both as reaction medium and reagent without any external solvent, provides advantages in terms of yields as well as in the work up procedure of the reaction.Fil: Gioia, Maria Luisa Di. Università della Calabria; ItaliaFil: Cassano, Roberta. Università della Calabria; ItaliaFil: Costanzo, Paola. Magna Græcia University. Department of Health Sciences; ItaliaFil: Herrera Cano, Natividad Carolina. Universidad Nacional de Córdoba; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Ciencia y Tecnología de Alimentos Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Ciencia y Tecnología de Alimentos Córdoba; ArgentinaFil: Maiuolo, Loredana. Università della Calabria; ItaliaFil: Nardi, Monica. Magna Græcia University. Department of Health Sciences; ItaliaFil: Nicoletta, Fiore Pasquale. Università della Calabria; ItaliaFil: Oliverio, Manuela. Magna Græcia University. Department of Health Sciences; ItaliaFil: Procopio, Antonio. Magna Græcia University. Department of Health Sciences; Itali
Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries
Abstract
Background
Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres.
Methods
This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries.
Results
In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia.
Conclusion
This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries
Electro-Conductive Membranes for Permeation Enhancement and Fouling Mitigation: A Short Review
The research on electro-conductive membranes has expanded in recent years. These membranes have strong prospective as key components in next generation water treatment plants because they are engineered in order to enhance their performance in terms of separation, flux, fouling potential, and permselectivity. The present review summarizes recent developments in the preparation of electro-conductive membranes and the mechanisms of their response to external electric voltages in order to obtain an improvement in permeation and mitigation in the fouling growth. In particular, this paper deals with the properties of electro-conductive polymers and the preparation of electro-conductive polymer membranes with a focus on responsive membranes based on polyaniline, polypyrrole and carbon nanotubes. Then, some examples of electro-conductive membranes for permeation enhancement and fouling mitigation by electrostatic repulsion, hydrogen peroxide generation and electrochemical oxidation will be presented
Injectable Hydrogels for Cancer Therapy over the Last Decade
The interest in injectable hydrogels for cancer treatment has been significantly growing over the last decade, due to the availability of a wide range of starting polymer structures with tailored features and high chemical versatility. Many research groups are working on the development of highly engineered injectable delivery vehicle systems suitable for combined chemo-and radio-therapy, as well as thermal and photo-thermal ablation, with the aim of finding out effective solutions to overcome the current obstacles of conventional therapeutic protocols. Within this work, we have reviewed and discussed the most recent injectable hydrogel systems, focusing on the structure and properties of the starting polymers, which are mainly classified into natural or synthetic sources. Moreover, mapping the research landscape of the fabrication strategies, the main outcome of each system is discussed in light of possible clinical applications
- …