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Abstract: Different carbon nanostructures have been explored as functional materials for the develop-
ment of effective nanomaterials in cancer treatment applications. This review mainly aims to discuss
the features, either strength or weakness, of carbon nanohorn (CNH), carbon conical horn-shaped
nanostructures of sp2 carbon atoms. The interest for these materials arises from their ability to couple
the clinically relevant properties of carbon nanomaterials as drug carriers with the negligible toxicity
described in vivo. Here, we offer a comprehensive overview of the recent advances in the use of
CNH in cancer treatments, underlining the benefits of each functionalization route and approach, as
well as the biological performances of either loaded and unloaded materials, while discussing the
importance of delivery devices.

Keywords: carbon nanohorns; cancer treatment; drug delivery; functional materials; nanohybrids

1. Introduction

Nanostructured systems are generally defined as materials with typical size smaller
than 100 nm and a high surface area to volume ratio. The characteristic tunable physico-
chemical properties make nanoparticles widely employed as vectors of bioactive agents in
biomedicine and emerging therapeutic carriers for the treatment of different diseases [1–3].
Nanoparticle systems have been proposed as coadjuvant to fight cancer, one of the leading
causes of death worldwide [4] which, according to World Health Organization (WHO),
is expected to cause 16.5 million deaths with 29.5 million new diagnoses per year in the
next two decades [5]. Surgery, chemotherapy and radiotherapy are the three main cancer
treatments, but, despite the significant progress made in recent years, an effective strategy
for complete tumor cells eradication is still lacking [6–8]. Chemotherapy protocols typ-
ically suffer from the unfavorable properties of cytotoxic drugs, such as poor solubility,
fast metabolism and clearance, extensive systemic toxicity due to the narrow therapeutic
index, and the nonspecific distribution within the body in healthy tissues [9–11]. Similarly,
despite the efficacy of radiotherapy protocols, ionizing radiation pose sever risk of toxicity
associated with the cumulative radiation dose [12,13]. Alternative therapeutics based on
carbon nanomaterials have thus been designed with the aim of addressing these clinical
and pharmacological challenges, allowing for the development of more effective clinical
protocols [14–16]. Most of the clinically relevant nanostructures are either organic (e.g.,
polymeric systems, liposome or micelles) or inorganic (e.g., metal and silica nanoparticles,
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or nanocrystals) nanoparticles [17–19]. Among them, more than 50 nanodrugs have been
approved for different clinical uses including cancer treatment, and more than 70 have
entered clinical trials [20,21]. Nevertheless, their effective translation to clinical practice
has been hindered by some severe drawbacks, such as their low stability in biological
environments or unfavorable pharmacokinetic profiles [22]. Thus, the development of in-
novative multi-functional materials, combining the key features of different nanostructures,
is receiving increasing attention by the research community [23].

Carbon-based nanomaterials (CN) have been widely explored because of their excel-
lent mechanical, thermal, and optical properties, as well as their high biocompatibility after
tailored surface functionalization [24–26]. CN were tested for applications in oncology,
aiming to address the key challenges of early diagnosis and the efficient treatment of can-
cers [27–29]. Several research groups have developed highly engineered nanotheranostics
by exploiting the ability of the sp2 carbon surface to interact with multiple copies of drugs
via either hydrophobic interactions or π–π stacking [30,31]. Photothermal therapy protocols
were proposed taking advantages of the CN absorption pattern in the infrared (IR) or near
infrared (NIR) regions, while fluorescence and photoacoustic imaging is possible due to
the CN ability to produce fluorescence and transform the energy from a laser into acoustic
signals, respectively [32,33]. As a nanocarrier, CN offers advantages to therapy in its ability
to accumulate into cancer cells through either passive (enhanced permeability and retention
effect—EPR) or active (by surface modification with a specific ligand) targeting [34,35],
with the further possibility to confer responsivity to an external stimuli (by introducing
appropriate functional groups) for controlling the release of the payload [36,37]. From
a chemical point of views, CN are single or multi layered sp2 carbon lattice differing in
size and shape [38,39], which can be classified as nanodots [40], fullerenes (F) [41], nan-
otubes (CNT) [42], graphene derivatives (G) [43], nanodiamond (ND) [44], and nanohorns
(CNH) [45] (Figure 1).
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Figure 1. Representation of the main carbon nanostructures.

Nanodiamonds are arrangements of sp3 carbon atoms in a rigid tetrahedral structure
with almost chemical inertness due to the lack of free electrons in the bulk structure [46].
The functionalization of ND via formation of radical species on their surface was exploited
as a strategy for the synthesis of biocompatible materials suitable for cancer diagnosis and
treatment [47]. Fullerene, consisting of sp2 carbon atoms arranged in the form of a hollow
sphere or ellipsoid, were the first type of CN utilized in biomedicine, where they were and
still are employed as theranostics due to their photothermal properties and low toxicity [48].
CNT are sp2 carbon allotropes with a cylindrical structure and high length-to-diameter
ratio. Investigations have determined that while this structure is more conducive to their
application as drug carriers in cancer treatment and retains the photothermal properties of
fullerene, serious concerns about their long-term toxicity have arisen, leading to debate
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regarding their clinical applicability [49–51]. Graphene, single atom sheets of sp2 carbon
atoms arranged in a honeycomb-like structure, is emerging as one of the most promising
nanomaterials for application in biological environments because of its ability to couple
the typical features of CN with an intrinsic biocompatibility [52–54]. CNH consist of horn
shaped nanostructures of sp2-bonded carbon atoms, being conceptually imagined as a
F subset with CNT chemistry, whose potential applicability in biomedicine was recently
explored [55].

In our previous works, we reviewed the advantages of CNT and G derivatives as
anticancer nanocarriers in enhancing the efficacy of conventional cytotoxic agents and
reversing multi-drug resistance [56,57]. Here, we aim to provide an overview of the recent
advances in the use of CNH, a relatively unexplored type of CN which offers interesting
solutions for cancer diagnosis and treatment.

2. CNH: A Bridge between Carbon Nanotubes and Fullerenes

From a morphological and topological point of view, CNH consist of a conical front-tip
section (cone angle of 120◦, main length and diameter of 40–50 and 2–5 nm, respectively)
composed of sp2 carbon atoms arranged in five pentagons (as found in F), with a sixth
pentagon forming the CNT-like hexagon walls around the axis [58]. Furthermore, hep-
tagons are present along the axis, to counteract the curvature change of pentagons and
confer the typical CNH chemistry [59]. CNH assemble to form aggregates with different
morphologies which can be classified in dahlia-like, bud-like or seed-like type [60]. In
particular, the dahlia-like CNH, spherical structure with a diameter of 80–100 nm composed
of nearly 2000 tubular unites, are the most frequently used in nano-oncology applications
(Figure 2) [61,62].
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single CNH, reproduced with permission from [63], Elsevier (2019). (b) Representative TEM image of dahlia like CNH.
Reproduced with permission from [64], Elsevier (2015).

The synthesis of CNH is based on the vaporization of a carbon substrate (e.g., graphite)
in the absence of any metal catalyst, and the subsequent quenching in an inert atmo-
sphere [65]. Depending on the energy source employed in the vaporization step, three
main synthetic methods can be described, namely arc discharge, laser ablation, and joule
heating. In all cases, the absence of metal impurities results in a purification step consisting
of thermal annealing to remove carbon impurities (in the form of graphite microparticles,
fullerenes, giant carbon onions, and amorphous carbon) which results in a remarkably
reduced toxicity in biomedical applications [45,66]. This is one of the main advantages of
CNH when compared to CNT, alongside the greater specific surface area, higher porosity
and higher diameter which allows the free movement of encapsulated molecules and the
occurrence of chemical reactions within their inner cavity [67]. Furthermore, the irregular
structure of CNH permits the tunable opening of holes at either tips or sidewalls, resulting
in a more favorable loading and release of chemotherapeutics [55].
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3. Functionalization of CNH for Biomedical Applications

Despite the similarities with other CNs, the chemical features of CNH affect their
potential biomedical applications because of their higher reactivity. This is owed to the
presence of several defect sites due to loss of aromaticity (e.g., pentagon and heptagon
rings) or pyramidal distortion of the sp2 carbon bonding (e.g., tip and opened tubular end),
resulting in easier chemical modification [68].

Covalent and non-covalent functionalization can be determined depending on the
type of chemical bond formed during synthesis. The two approaches alter how the π-π
network of the CNH surface is preserved or disrupted and therefore the extent to which
surface properties such as electrical and thermal conductivity, mechanical strength, and
photothermal behavior are retained. The covalent approach guarantees a more stable
interaction between CNH and selected functionalizing agents but leads to the formation
of sp3 carbon as perturbing elements of the graphite layer. On the contrary, non-covalent
functionalization preserves surface properties but renders a less stable interaction between
CNH and derivatizing elements [45] (Figure 3).
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Both approaches can be further classified according to the presence or absence of a
preliminary oxidation step, which when carried out causes the formation of holes and
oxygen-rich functionalities, such as OH and COOH groups, on the CNH carbon layer.
Different strategies can be utilized for CNH oxidation, including treatment with oxidizing
acids [69], O2 at high temperature [70], peroxides [71], or air upon microwave irradia-
tion [72]. The mechanism of oxidation reaction was proposed by Almeida et al. in the case
of O2 treatment [73]. The first step in the oxidation process is the adsorption of oxygen
molecules onto CNH defect sites, defined as pentagon rings with higher reactivity. Sub-
sequently, a [2+2] cycloaddition reaction occurs with the formation of peroxide species
rapidly undergoing conversion into diketones by breaking of C-C and C-O bonds. Next,
further reaction with oxygen molecules lead to the formation of lactones hydrolyzed to
carboxyl groups by the nucleophilic attack of H2O. Different oxidation levels can be ob-
tained by modulating either the concentration of reactant or the reaction time. In detail, the
acid treatment results in a low oxygen content while the use of hydrogen peroxide induce
carbonyl and carboxyl groups formation by short and long reaction time, respectively, and
O2 treatment prevents the creation of a large number of nanowindows on the CNH surface
and thus the loss of structural features [74].

In the next paragraphs, the reviewed studies are divided on the basis of the covalent
or non-covalent functionalization, depending on the nature of the chemical bond formed
with the functional element responsible for the biological or analytical performance of the
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final material. The key parameters considered are the method of synthesis and the in vitro
and/or in vivo models employed in their assessment.

3.1. Non-Covalent Functionalization of CNH for Application in Oncology

CNH functionalization through a non-covalent approach involves the π−π stacking
interactions with aromatic organic materials [75], the electrostatic interactions [76], the
filling of the inner cavity with bioactive molecules [73], as well as the decorating the outer
shell with metal nanoparticles such as magnetite [77], titanium [78], palladium [79], and
platinum [80] nanoparticles. In most cases, the organic molecule used for CNH derivatiza-
tion consists of polymeric materials, due to their ability to enhance biocompatibility and
confer tailored properties to the carbon nanostructure [81]. Particular types of non-covalent
functionalization involve the filling of oxidized CNH with C60 fullerenes [82], or metal
nanoparticles such as platinum [83] and gadolinium [84] nanoparticles.

Determining the toxicological and pharmacokinetics profile of the nanostructures is
of paramount importance for considering a potential clinical application of CNH. To this
regard, the absence of metal impurity was found to be a key determinant to avoid potential
carcinogenic risk in cell cultures, as well as in reduced dermal and ocular side-reactions [85],
although CNH easily cross the biological barrier and undergo cell internalization via
multiple pathways [86,87]. CNH were well tolerated upon either oral ingestion, with a
lethal dosage for rats higher than 2000 mg kg−1 of body weight [85] or inhalation [88,89].
Tahara et al. proved negligible toxicity of SWNHs intravenously administered to mice
over a 26-week test period [90]. Moreover, while He et al. determined the in vivo fate of
CNH which were incorporated within the macrophages by endocytosis and degraded by
reactive oxygen species (ROS). Interestingly, this process occurs without determining any
inflammatory response due to the low interaction with the key transmembrane protein, the
glycoprotein non-metastatic melanoma protein B (GPNMB), which, instead, is involved in
the toxicity of different types of nanostructures like CNT [91]. Finally, the wrapping of lipid
polyethylene glycol (LPEG) was used to assess the CNH biodistribution [92], obtaining
negligible accumulation in the lung, skin, or kidney, while a size-dependent accumulation
was observed in liver and spleen.

On the other hand, experimental evidence indicated a direct effect of single walled
CNH (SWCNH) on human glioma cell lines, which reduced cell proliferation by blocking
the tumor cells in G1 phase and ultimately induced apoptosis [93].

The most relevant and recent examples of non-covalently functionalized CNH pro-
posed for cancer therapy are reported in Table 1. Here, the effectiveness of CNH as
biomaterials for cancer treatment was presented by showing either their ability to vectorize
drug molecules to the tumor site or the possibility to generate heat upon irradiation thus
killing cancer cells. It is evident that most studies focusing on the evaluation of CNH as
drug carrier involves the use of cisplatin (CDDP) as chemotherapeutic, while when other
drug are employed, authors explored the possibility to combine the delivery efficiency
with the NIR absorption properties.

The interest on CDDP vectorization is related to the need of overcoming the acute and
cumulative toxic side effects, while preserving the strong anticancer activity of the platinum
drug. Several research groups explored the possibility to use carbon nanostructures as
base materials for the fabrication of drug delivery vehicles, showing the added values
of CNT and CNH [94]. Tubular structures, indeed, offer the possibility to use either the
outer surface for loading or the inner surface for filling, with loading efficiency strictly
depending on both the CN purification procedure and the solvent [95].
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Table 1. Performance of pristine and non-covalent modified CNH for cancer theranostics.

Carrier Features Biological Features

Ref.
CNH Derivatizating Agent Targeting

Element
Bioactive Agent

(DL%)
Cancer Model Health Model

Performance
Tissue In Vitro In Vivo In Vitro In Vivo

CNH - - - - - - CDDP a (33/50) - - - - - - - - - - - - - - - Slow release [63]

SWCNH PS - - - - - - Brain

U87
- - - - - - - - - Apoptosis [93]U251

U373

SWCNH PF127 - - - - - - - - - - - - - - - - - - - - - Photothermal [96]

SWCNH PF127 - - - - - - Breast MDA-MB-231 - - - - - - - - - Photothermal [97]

SWCNH PF127 - - - - - - Kidney RENCA - - - - - - - - - Photothermal [98]

SWCNH DCA-HPCS - - - DOX b Breast 4T1 4T1 - - - - - - Photothermal synergism [99]

SWCNH C18PMH/mPEG-PLA pH CDDP b (66)
DOX b (44)

Breast 4T1
4T1 - - - - - - Photothermal synergism [100]

Lung - - -

SWCNH - - - - - - ICG b (37) Breast 4T1 4T1 - - - - - - Photodynamic [101]

SWCNH - - - - - - HYP b (52) Breast 4T1 4T1 - - - - - - Photodynamic [102]

SWCNH - - - - - - PC b

(33) Breast
4T1

4T1 - - - Balb/c mice Photodynamic [103]
MDA-MB-231

SWCNH - - - - - - TSCuPc b (36) Cervix HeLa - - - - - - - - - Photodynamic [104]

oxCNH DISPE-PEG P-gp Ab ETO b (40) Lung
A549 - - -

- - - - - - Photothermal synergism
MDR reversal

[105]
A549R A549R

1 oxSWCNH - - - - - - - - - - - - - - - - - - - - - - - - Photothermal [106]

2 oxSWCNH - - - - - - CDDP a (20) Lung NCI-H460 - - - - - - - - - Synergism [61]

oxSWCNH DISPE-PEG VEGF mAb DTX b (31)
Breast MCF7 - - -

- - - - - - Synergism [107]
Liver - - - H22

oxSWCNH SA pH
VEGF mAb DOX b (50)

Breast MCF7 - - - - - -
- - - Synergism [108]Kidney - - - - - - HEK293

Liver - - - H22 - - -

oxSWCNH DISPE-PEG IGF-IR mAb VCR b (38)
Breast MCF7 - - -

HUVEC - - - Synergism [64]
Liver - - - H22

2 oxSWCNH PEG–NHBP - - - CDDP a (22) Lung NCI-H460 - - - - - - - - - Synergism [109]

1 Oxidation by HNO3; 2 Oxidation by CO2 laser; a Filling; b Wrapping; Ab: Antibody; C18PMH: poly (maleic anhydride-alt-1-octadecene); CDDP: cis-diaminedichloroplatinum(II); CNH: Carbon Nanohorn; DCA:
Deoxycholic acid; DISPE: 1,2-Distearoyl-snglycero-3-phosphoethanolamine; DOX: Doxorubicin; DTX: Docetaxel; ETO: Etoposide; HPCS: hydropropyl chitosan; HYP: Hypericin; ICG: Indocyanine green; IGF-IR:
insulin-like growth factor-I receptor; mAb: monoclonal Ab; MDR: Multi-drug resistance; mPEG-PLA: methoxypolyethyleneglycol-b-poly-D, L-lactide; ox CNH: Oxidized CNH; oxSWCNH: Oxidized SWCNH;
PC: Phycocyanin; PEG: polyethylene glycol; PF: Pluronic F; P-gp: P-glycoprotein; PS: polystyrene; SA: Sodium Alginate; SWCNH: Single-Walled CNH; TSCuPc: Copper(II) phthalocyanine-3,4′,4′′,4′′′-tetrasulfonic
acid tetrasodium salt; VEGF: vascular endothelial growth factor; VCR: Vincristine.
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The suitability of SWCNH for CDDP encapsulation was proved in a work by Ajima
et al. [61], where the slow release (50% in almost 70 h), together with the high CNH uptake
by cancer cells, was proposed for the treatment of lung cancer in vitro. The same authors
proposed a further enhancement to the colloidal stability of oxidized SWCNH (oxSWCNH)
in cell culture media by wrapping with a polyethylene glycol (PEG)-peptide aptamer
(NHBP-1) conjugate [109]. For a better understanding of the CDDP@CNH efficiency,
Almeida et al. [63] conducted experimental and molecular dynamics simulations to predict
the stability of the inclusion complex, characterized by the presence of two drug molecules
at the tip region. The results indicated that the drug-carrier interaction mainly consisted of
van der Waals and electrostatic interactions, the formation of the inclusion complex was
thermodynamically favorable, and the opening angle of the cone modulated drug mobility,
thus allowing sustained drug release.

As previously mentioned, the effectiveness of CNH in cancer therapy is also related to
their NIR absorption ability, allowing the development of both photothermal (PTT) and
photodynamic therapy (PDT) protocols. In a photothermal process, the thermal ablation of
cancer tissues occurs upon generation of heat by the NIR-irradiated CNH [110], while in a
photodynamic protocol cell death is a consequence of the generation of singlet oxygen and
other ROS [32]. The ability of CNH to absorb light in the IR region and generate heat [106]
was clearly proved to be strongly dependent on the adopted synthetic procedure and the
surface modification in experiments assessing the optical properties of sodium alginate (SA)
phantoms in the presence of Pluronic F127 (PF127) functionalized CNH [96]. Furthermore,
the same authors demonstrated the ability of CNH to act as coadjuvant in photothermal
therapy with SA phantoms seeded with breast cancer cells [97]. Similar results were
obtained in vitro in renal cancer cells, where a concentration dependent anticancer efficacy
was recorded upon laser irradiation in the presence of PF127 modified SWCNH, with
both the laser treatment and exposure to CNH alone being less effective in killing cancer
cells [98].

Different studies explored the possibility of combining the photothermal efficacy with
carrier features. Specifically, Doxorubicin (DOX) [99,100] and CDDP [100] were loaded via
π-π stacking and electrostatic interaction onto the surface of CNH non-covalently function-
alized with deoxycholic acid-hydropropyl chitosan conjugate [99] or methoxypolyethyleneg-
lycol-b-poly-D, L-lactide [100], with appropriate photo- and chemo-therapeutic protocols
subsequently designed for the treatment of breast [99,100] and lung [100] carcinomas
(Figure 4).
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Figure 4. Schematic representation of the preparation of Cisplatin and Doxorubicin dual loaded
Single-Walled Carbon Nanohorns. Reproduced from [100]. Ivyspring (2018).

Effective photodynamic therapy protocols were developed by functionalizing the
CNH outer surface with photosensitizers, such as indocyanine green (ICG) [101], hypericin
(Hyp) [102], phycocyanin (PC) [103], and metal phthalocyanines (MPc) [104]. The resulting
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materials, overcoming the limitations of free photosensitizers, such as a tendency to aggre-
gate and to be degraded in physiological environments (ICG, MPc), low water solubility
(Hyp), and degradation upon irradiation (PC), were found to be promising tools for the
treatment of breast [101–103], and cervical [104] cancer with negligible toxicity in vivo [103]
(Figure 5).
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Active targeting strategies were proposed to improve the selectivity of the nanocarrier,
thus enhancing the vectorization efficiency and the anticancer activity.

Humanized anti-vascular endothelial growth factor (anti-VEGF) monoclonal anti-
body was conjugated to the surface of CNH modified by 1,2-Distearoyl-sn-glycero-3-
phosphoethanolamine (DISPE)-PEG or SA, obtaining synergistic effect with the loaded
drugs (e.g., Docetaxel—DTX [107] and DOX [108]) in the treatment of breast cancer
cells [107,108] in vitro and in in vivo models of liver cancer [108]. In such model, in vitro
experiments determined that an acidic pH reminiscent of the tumor environment resulted
in a faster and higher DOX release. This led to the hypothesis that drug release could
therefore be specific to the tumor site, which was confirmed in vivo by the absence of
uptake in healthy kidney cells or of hepatotoxicity, cardiotoxicity, and nephrotoxicity.
The same cancer model was used to test DISPE-PEG-CNH modified with an insulin-like
growth factor-I receptor (IGF-IR) monoclonal antibody for the vectorization of vincristine
(VCR) [64]. Wang et al. [105] proposed the P-gp monoclonal antibody as a targeting ligand
for the treatment of lung cancer, addressing multi-drug resistance (MDR) insurgence. In
fact, upon exposure to etoposide (ETO), overexpression of membrane efflux pumps was
induced, resulting in drug intracellular concentration and thus the cytotoxic efficiency,
being dramatically reduced. The proposed therapeutic strategy strongly inhibited the
activity of the membrane transporters, and the anticancer efficacy was restored.

3.2. Covalent Functionalization of CNH for Application in Oncology

The covalent functionalization of outer surface is proposed to improve the perfor-
mance of CNH as delivery vehicle because the stable interaction with the derivatization
moieties allows the properties of the final device to be finely tuned according to the specific
therapeutic needs. The most relevant and recent examples of covalently functionalized
CNH proposed for cancer therapy are reported in Table 2.

The explored strategies to chemically modify CNH mainly consist in condensation
reaction on oxCNH or cycloaddition reaction on the surface of pristine CNH.
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Table 2. Performance of covalent modified CNH for cancer theranostics.

Carrier Features Biological Features

Ref.
CNH

Derivatization
Targeting Bioactive

Agent (DL%)
Cancer Model Health Model

Performance
Derivatizing Agent Synthesis Tissue In Vitro In Vivo In Vitro In Vivo

1 oxSWCNH
AET

CdSe/ZnS QDs
Condensation (EDC)/

Coordination
- - - - - -

Breast MDA-MB-231
- - - - - - - - - High uptake [111]Brain U-87

Bladder AY-27

1 oxSWCNH

CDDP Condensation (EDC) - - - - - -

Bladder AY-27 - - - - - - - - - High uptake
Photothermal

[112]- - - - - - - - - CDDP a

AET
CdSe/ZnS QDs

Condensation (EDC)/
Coordination - - - - - -

1 oxSWCNH
AET

CdSe/ZnS QDs
Condensation (EDC)/

Coordination - - - CDDP a (19) Bladder AY-27 - - - - - - - - -
Synergism

Fluorescence
Imaging

[113]

2 oxCNH PEI Condensation (EDC) Magnetic MAG Cervix HeLa - - - - - - - - - Photothermal [114]

2 oxCNH PEI Condensation (EDC) Magnetic
FA MAG Epidermis KB - - - FHs173We - - - Photothermal [55]

2 oxCNH
Liposome-AVI-BIOT-

PEI
Condensation (EDC) Magnetic MAG Cervix HeLa - - -

GP8
Mice Photothermal [115]

SV40

3 oxSWCNH BSA/ZnPc Condensation
(EDC)/Wrapping — — Modified

Fibroblast 5RP7 5RP7 - - - - - - Photothermal [116]

CNH PSMA mAb Cycloaddition PSMA mAb CDDP b (1.3) Prostate PC-3 - - - - - - - - - Synergism [117]

CNH PAMAM Cycloaddition - - - siRNA b

DTX c Prostate LNCaP - - - - - - - - - Synergism [118]

CNH PAMAM/
AuNPs Cycloaddition/Coordination - - - siRNA b Prostate PC3 - - - - - - - - - Synergism [119]

1 Oxidation by HNO3; 2 Oxidation by O2 flow; 3 Oxidation by H2O2; a Filling; b Wrapping; c Mixing; AET: cysteamine hydrochloride; AuNPs: Gold Nanoparticles; AV: Avidin; BIOT: Biotin; BSA: Bovine
Serum Albumin; CDDP: cis-diaminedichloroplatinum(II); CNH: Carbon Nanohorn; DTX: Docetaxel; EDC: N-(3-dimethylaminopropyl)-N-ethylcarbodiimidehydrochloride; FA: Folic Acid; mAb: Monoclonal
Antibody; MAG: magnetic iron nanoparticles; oxCNH: Oxidized CNH; PAMAM: polyamidoamine dendrimer; PEI: Polyethylenimine; PMSA: prostate-specific membrane antigen; QDs: Quantum Dots; SWCNH:
Single-Walled CNH; ZnPc: Zinc phthalocyanine.
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In the first case, the COOH and OH groups formed in the oxidation step undergo fur-
ther chemical derivatizations, such as nucleophilic/electrophilic amidation, esterification,
and thiolation reactions through acyl chloride or carbodiimide chemistry [72].

Zimmermann et al. [111] used the covalent functionalization with cysteamine hy-
drochloride (AET) as a ligand for CdSe/ZnS Quantum Dots (QD) to investigate the intra-
cellular fate of oxCNH in glioblastoma, breast cancer, and bladder transitional carcinoma
in vitro. Through flow cytometry they demonstrated that CNH were internalized by endo-
cytosis with a cell type-dependent uptake rate. Furthermore, while at the first experimental
timepoint (60 min) the main observed cellular localization was cytosolic, a significant
amount of nanoparticle was evident in the nuclei after 24 h. More interestingly, the inter-
nalization was still observed after 24 h, corresponding to the time required for SWCNH
aggregation in the cell culture media.

Another approach involves the use of bioactive species as derivatizing agents. A
CDDP nanocarrier obtained by covalent conjugation of the cytotoxic drug onto the surface
of oxCNH, observing a significant reduction in the efficiency of combined photo- and
chemo-therapy [112]. To further investigate this issue, the efficiency of the CDDP-CNH
conjugate was compared with a carrier prepared by inserting the drug in the inner cavity
of the carbon nanostructure, and used the functionalization with CdSe/ZnS QDs to study
the cellular uptake pathways (Figure 6) [113].
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Figure 6. (a) Representation of Cisplatin-Carbon Nanohorns/Quantum Dots (CDDP-CNH/CdSe/
ZnS QDs); (b) TEM images of CDDP-CNH/CdSe/ZnS QDs; (c) Internalization of CDDP-CNH/CdSe/
ZnS QDs in AY-27 cells. Reproduced with permission from [113]. Elsevier (2018).

The covalent functionalization did not significantly affect the internalization rate, but
the anticancer efficacy was demonstrated to depend by the different kinetics of drug release.
Upon covalent conjugation negligible amount of drug was released, resulting in a lower
efficiency compared to the free drug. The faster release of the CDDP inclusion complex
was found to be more cytotoxic upon NIR irradiation, allowing better control of drug
distribution between cancerous and healthy tissues compared to the administration of
free CDDP. By combining improved cytotoxicity and fluorescence, nanocarriers with these
design features were proposed as nanotheranostic vehicles in the treatment of bladder
cancer [113].

Another interesting functionalization method derives from the covalent “grafting to”
and “grafting from” of polymeric materials onto the CNH surface [56]. The “grafting to”
the surface is performed by natural or synthetic polymers linked to chemical functionalities
available of CNH outer shell [120], while the second approach involves the binding of
suitable initiator systems on CNH and the in situ formation of synthetic polymeric materials
by anionic, cationic, radical, or atom transfer radical polymerization [121].

Polyethylenimine (PEI) was used for the covalent functionalization of nanocomplexes
composed of oxCNH obtained by treatment with oxygen flow and magnetite nanoparticles
(MAG) [114]. The obtained system took advantages from the water affinity of PEI and
the ability of MAG to enhance cellular uptake upon exposure to an external magnetic
field, and was successfully tested in a cervical cancer model. The same authors proposed
further upgrades to the nanovehicles through the use of folic acid as a targeting unit for
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the treatment of human epidermal carcinoma [55], or PEI functionalized liposomes for
the development of supramolecular nanotransporters [115]. In the latter case, by using
fluorescent probe, the authors obtained a temporal and spatial control on the payload
delivery both in vitro and in vivo.

As discussed in regards to non-covalent functionalization routes, covalent modifi-
cations of CNH were also developed for photodynamic (PDT) and photothermal (PTT)
cancer therapy. [116]. The PTT features of CNH were combined with the PDT properties of
zinc phthalocyanine covalently attached to the surface of oxCNH, obtained by treatment
with oxygen peroxide. Effective cancer ablation in vitro and in vivo was obtained through
a final coating of the structure with bovine serum albumin.

Covalent derivatization methods of pristine CNH include the formation of fluorinated
CNH by treatment with F2 at high temperature [122], and amino-CNH by refluxing in NH3
in the presence of NaNH2 [123], respectively. In this case, the obtained CNH derivative
can undergo further modification reactions by nucleophilic substitution or amidation reac-
tions, respectively. Carbamate chemistry [124], the addition of aryl diazonium salts [125]
1,3-dipolar cycloaddition [126], and copper-catalyzed alkyne-azide cycloaddition [127]
reactions were also employed as derivatization procedures of pristine CNH.

Cycloaddition reactions were explored for the covalent conjugation of targeting unit,
namely the anti-PSMA D2B Ab, for the vectorization of CDDP to prostate cancer cells [117].
These reactions were also employed to fabricate polyamidoamine dendrimer (PAMAM)
based delivery system for siRNA, due to the ability of PAMAMs to both enhance CNH
water affinity preventing any unfavorable aggregation process, and interact with RNA
molecules via electrostatic binding [118,119].

The typical 1,3-cycloaddition involves the reaction between CNH and the suitable
aldehyde and amino acid in an appropriate organic solvent [128]. Aldehyde and amino
acid reacted in situ to form an azomethine ylides undergoing coupling with CNH and
preserving, at the same time, the integrity of the sp2 surface lattice [129]. This method,
extensively exploited by Prato and co-workers to obtain different CNT and G derivatives for
biomedical applications, can be useful for orthogonal substitutions, either in the presence
of in the absence of simultaneous oxidation procedures [130,131].

Finally, it should be mentioned that, in the efforts to find innovative solvent-free and
“green” chemistry approaches for covalent CNH functionalization, microwave-assisted
reactions are emerging as cost-effective methods for the preparation of CNH derivative
with high yields and purity [72].

4. Conclusions and Perspectives

Improving cytotoxic drugs’ efficacy in cancer treatment by tailored nanomaterials is
attracting great attention in different research fields, from chemistry and materials science
to biology and medicine. Among others, the favorable properties of CN used to the
develop nanocarriers based on F, CNT, and GO have shown improved efficiency against
cancer cells with significant reduction of toxicity to healthy tissues. Here, we highlight
the performances of a specific class of CN, namely CNH, which, due to their physic-
chemical and biological features, can be conceptually considered as a bridge between F,
CNT and GO, coupling the advantages of CNT (high cell uptake) with those of F and GO
(reduced toxicity). These materials are still not widely utilized in biomedicine, although
the encouraging results published over the last few years, as summarized in Table 3, are
opening interesting opportunities for the development of effective nanocarriers.

The studies reviewed in this paper can be organized according to the two main classes
of CNH (pristine vs. oxidized), and the type of functionalization approach (covalent vs.
non-covalent). The outcomes of each study are expressed as success (%) in cancer treat-
ment by two categories, namely the drug synergisms and the suitability for phototherapy
treatments, although different performances can be described including the improvement
of the release profile, the interference with the apoptotic pathways, and the induction of
MDR reversal.
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Table 3. Main outcome of the studies covered in this review.

CNH Approach Ref. Total
Studies *

Derivatizing
Agent Reaction Targeting Drug Cancer Model Efficacy Side-

Toxicity Performance

% Studies # % Success #

CNH
Non covalent

[63]
[93]
[96]
[97]
[98]
[99]
[100]
[101]
[102]
[103]
[104]

12
None (42)

PF (25)
Other (33)

None (33)
Wrapping (77)

None (83)
Stimuli (17)

None (35)
CDDP (25)

DOX (8)
ICG (8)
HYP (8)
PC (8)

TsCuPc (8)

None (18)
Breast (50)
Brain (8)

Kidney (8)
Lung (8)

Cervix (8)

Vitro (75)
Vivo (50) 0

Release (8)
Apoptosis (8)

Synergism (25)
Phototherapy (75)

Covalent
[117]
[118]
[119]

3 PAMAM (67)
Ab (33)

Cycloaddition
(100) Ab (33)

CDDP (33)
SiRNA (66)
DTX (33)

Prostate (100) Vitro
(100) Synergism (100)

oxCNH Non covalent

[61]
[64]
[105,
106]
[107]
[108]
[109]

9
None (22)
dPEG (67)

SA (11)

None (22)
Wrapping (78)

None (33)
Ab (66)
pH (11)

None (11)
CDDP (22)
DTX (22)
DOX (11)
VCR (22)
ETO (11)

None (11)
Lung (33)
Breast (33)
Liver (22)

Vitro (67)
Vivo (33) 22

Synergism (78)
Phototherapy (22)
MDR reversal (11)

oxCNH Covalent

[55]
[111]
[112]
[113]
[114]
[115]
[116]

11

None (9)
QDs (45)
PEI (27)
BSA (9)

CDDP (9)

Condensation
(100)

Magnetic (27)
FA (9)

None (85)
CDDP (27)
MAG (27)

Bladder (45)
Cervix (18)
Breast (9)
Brain (9)

Epidermis (9)
Fibroblast (9)

Vitro
(100)

Vivo (9)
18 Synergism (36)

Photherapy (63)

* A single ref may cover multiple studies simultaneously. # calculated over the total studies. Ab: Antibody; BSA: Bovine Serum Albumin; CDDP: cis-diaminedichloroplatinum(II); DOX: Doxorubicin; dPEG:
Polyethylene glycol derivatives; DTX: Docetaxel; ETO: Etoposide; FA: Folic acid; HYP: Hypericin; ICG: Indocyanine green; MAG: magnetic iron nanoparticles; PAMAM: polyamidoamine; PC: phycocyanin; PEI:
Polyethylenimine; PF: Pluronic F; QDs: Quantum Dots; SA: Sodium Alginate; TSCuPc: Copper(II) phthalocyanine-3,4′,4′′,4′′′-tetrasulfonic acid tetrasodium salt; VCR: Vincristine.
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Finally, to give a comprehensive overview of the study heterogeneity and for a better
discussion of the results, the carrier’s features, as well as the loaded drug and the tested
cancer model, are reported as amount (%) of studies, with a single research article cov-
ering multiple studies simultaneously. Most studies involving pristine CNH report on
non-covalent functionalization approaches, while covalent functionalization routes are
more relevant in the case of oxCNH, due to the ability of such functionalities to undergo
derivatization via condensation reaction with tailored chemical species of either low or
high molecular weight.

Interestingly, pristine CNH are often used alone in the absence of loaded drug, due to
their ability to promote photothermal ablation of cancer cells even in the absence of any
derivatizing agent, while nanocarriers for the delivery of CDPDP and DOX in the presence
of siRNA were obtained by cycloaddition on the same nanostructures. oxCNH suitably
modified by either covalent or non-covalent methods was mainly proposed as cargo to
synergize CDDP efficiency with reduced side-toxicity, although covalent functionalization
routes (mainly with PEG derivatives) were proposed for the enhancement of anticancer
performance by phototherapy protocols without the loading of any cytotoxic drug.

Finally, a relevant number of studies proposed the possibility to confer a targeting
effect by exploiting the different pH environment of healthy vs. cancer tissues, applying
an external magnetic field as driving force for the vectorization, or using Ab moieties to
selectively target cancer cells.

However, it should be highlighted that despite the very promising results obtained
in in vitro models of diseases, the lack of adequate studies using suitable in vivo models
strongly restricts current understanding of how these structures behave in biological
systems. This is the main issue to be addressed before hypothesizing a translation into
pre-clinical or clinical trials. This restriction does not diminish however, the currently
available findings which are broadly positive. In particular, the hypothesized low side-
toxicity of CNH based devices indicate that these studies should be used as a starting
point for experimental protocols aiming to couple multidisciplinary and complementary
expertise for the development of innovative functional nanomaterials for fighting cancer.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. De Jong, W.H.; Borm, P.J.A. Drug delivery and nanoparticles: Applications and hazards. Int. J. Nanomed. 2008, 3, 133–149.

[CrossRef] [PubMed]
2. Kim, B.Y.S.; Rutka, J.T.; Chan, W.C.W. Current concepts: Nanomedicine. N. Engl. J. Med. 2010, 363, 2434–2443. [CrossRef]

[PubMed]
3. Stylianopoulos, T.; Jain, R.K. Design considerations for nanotherapeutics in oncology. Nanomed. Nanotechnol. Biol. Med. 2015, 11,

1893–1907. [CrossRef] [PubMed]
4. Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global Cancer Statistics 2018: GLOBOCAN Estimates of

Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. Ca Cancer J. Clin. 2018, 68, 394–424. [CrossRef]
5. International Agency for Research on Cancer. Cancer Tomorrow; International Agency for Research on Cancer: Lyon, France, 2019.
6. Norouzi, M.; Amerian, M.; Atyabi, F. Clinical applications of nanomedicine in cancer therapy. Drug Discov. Today 2020, 25,

107–125. [CrossRef]
7. Lytton-Jean, A.K.R.; Kauffman, K.J.; Kaczmarek, J.C.; Langer, R. Cancer nanotherapeutics in clinical trials. In Cancer Treatment and

Research; Springer: Cham, Switzerland, 2015; Volume 166, pp. 293–322.
8. Pradeep, P.; Kumar, P.; Choonara, Y.E.; Pillay, V. Targeted nanotechnologies for cancer intervention: A patent review (2010–2016).

Expert Opin. Ther. Pat. 2017, 27, 1005–1019. [CrossRef]
9. Da Silva, C.G.; Peters, G.J.; Ossendorp, F.; Cruz, L.J. The potential of multi-compound nanoparticles to bypass drug resistance in

cancer. Cancer Chemother. Pharmacol. 2017, 80, 881–894. [CrossRef]

http://dx.doi.org/10.2147/IJN.S596
http://www.ncbi.nlm.nih.gov/pubmed/18686775
http://dx.doi.org/10.1056/NEJMra0912273
http://www.ncbi.nlm.nih.gov/pubmed/21158659
http://dx.doi.org/10.1016/j.nano.2015.07.015
http://www.ncbi.nlm.nih.gov/pubmed/26282377
http://dx.doi.org/10.3322/caac.21492
http://dx.doi.org/10.1016/j.drudis.2019.09.017
http://dx.doi.org/10.1080/13543776.2017.1344216
http://dx.doi.org/10.1007/s00280-017-3427-1


C 2021, 7, 3 14 of 18

10. Guo, X.; Zhuang, Q.; Ji, T.; Zhang, Y.; Li, C.; Wang, Y.; Li, H.; Jia, H.; Liu, Y.; Du, L. Multi-functionalized chitosan nanoparticles for
enhanced chemotherapy in lung cancer. Carbohydr. Polym. 2018, 195, 311–320. [CrossRef]

11. Weeks, J.C.; Catalano, P.J.; Cronin, A.; Finkelman, M.D.; Mack, J.W.; Keating, N.L.; Schrag, D. Patients’ expectations about effects
of chemotherapy for advanced cancer. N. Engl. J. Med. 2012, 367, 1616–1625. [CrossRef]

12. Peitzsch, C.; Cojoc, M.; Hein, L.; Kurth, I.; Mäbert, K.; Trautmann, F.; Klink, B.; Schröck, E.; Wirth, M.P.; Krause, M.; et al.
An Epigenetic Reprogramming Strategy to Resensitize Radioresistant Prostate Cancer Cells. Cancer Res. 2016, 76, 2637–2651.
[CrossRef]

13. Huang, Y.; Fan, C.Q.; Dong, H.; Wang, S.M.; Yang, X.C.; Yang, S.M. Current applications and future prospects of nanomaterials in
tumor therapy. Int. J. Nanomed. 2017, 12, 1815–1825. [CrossRef] [PubMed]

14. Alsaab, H.O.; Alghamdi, M.S.; Alotaibi, A.S.; Alzhrani, R.; Alwuthaynani, F.; Althobaiti, Y.S.; Almalki, A.H.; Sau, S.; Iyer,
A.K. Progress in clinical trials of photodynamic therapy for solid tumors and the role of nanomedicine. Cancers 2020, 12, 2793.
[CrossRef] [PubMed]

15. Liang, R.; Chen, Y.; Huo, M.; Zhang, J.; Li, Y. Sequential catalytic nanomedicine augments synergistic chemodrug and chemody-
namic cancer therapy. Nanoscale Horiz. 2019, 4, 890–901. [CrossRef]

16. Bhise, K.; Sau, S.; Alsaab, H.; Kashaw, S.K.; Tekade, R.K.; Iyer, A.K. Nanomedicine for cancer diagnosis and therapy: Advancement,
success and structure-activity relationship. Ther. Deliv. 2017, 8, 1003–1018. [CrossRef]

17. Faraji, A.H.; Wipf, P. Nanoparticles in cellular drug delivery. Bioorgan. Med. Chem. 2009, 17, 2950–2962. [CrossRef]
18. Parveen, S.; Misra, R.; Sahoo, S.K. Nanoparticles: A boon to drug delivery, therapeutics, diagnostics and imaging. Nanomed.

Nanotechnol. Biol. Med. 2012, 8, 147–166. [CrossRef]
19. Lee, D.E.; Koo, H.; Sun, I.C.; Ryu, J.H.; Kim, K.; Kwon, I.C. Multifunctional nanoparticles for multimodal imaging and theragnosis.

Chem. Soc. Rev. 2012, 41, 2656–2672. [CrossRef]
20. Ventola, C.L. Progress in nanomedicine: Approved and investigational nanodrugs. Pharm. Ther. 2017, 42, 742–755.
21. Bobo, D.; Robinson, K.J.; Islam, J.; Thurecht, K.J.; Corrie, S.R. Nanoparticle-Based Medicines: A Review of FDA-Approved

Materials and Clinical Trials to Date. Pharm. Res. 2016, 33, 2373–2387. [CrossRef]
22. Rodriguez-Lorenzo, L.; Rafiee, S.D.; Reis, C.; Milosevic, A.; Moore, T.L.; Balog, S.; Rothen-Rutishauser, B.; Ruegg, C.; Petri-Fink, A.

A rational and iterative process for targeted nanoparticle design and validation. Colloids Surf. B Biointerfaces 2018, 171, 579–589.
[CrossRef]

23. Wegst, U.G.K.; Bai, H.; Saiz, E.; Tomsia, A.P.; Ritchie, R.O. Bioinspired structural materials. Nat. Mater. 2015, 14, 23–36. [CrossRef]
[PubMed]

24. Shibu, E.S.; Hamada, M.; Murase, N.; Biju, V. Nanomaterials formulations for photothermal and photodynamic therapy of cancer.
J. Photochem. Photobiol. C Photochem. Rev. 2013, 15, 53–72. [CrossRef]

25. Yamashita, T.; Yamashita, K.; Nabeshi, H.; Yoshikawa, T.; Yoshioka, Y.; Tsunoda, S.I.; Tsutsumi, Y. Carbon nanomaterials: Efficacy
and safety for nanomedicine. Materials 2012, 5, 350–363. [CrossRef] [PubMed]

26. Maharaj, D.; Bhushan, B. Friction, wear and mechanical behavior of nano-objects on the nanoscale. Mater. Sci. Eng. R Rep. 2015,
95, 1–43. [CrossRef]

27. Bianco, A.; Kostarelos, K.; Prato, M. Opportunities and challenges of carbon-based nanomaterials for cancer therapy. Expert Opin.
Drug Deliv. 2008, 5, 331–342. [CrossRef]

28. Loh, K.P.; Ho, D.; Chiu, G.N.C.; Leong, D.T.; Pastorin, G.; Chow, E.K.H. Clinical Applications of Carbon Nanomaterials in
Diagnostics and Therapy. Adv. Mater. 2018, 30, 1802368. [CrossRef]

29. Yang, C.; Denno, M.E.; Pyakurel, P.; Venton, B.J. Recent trends in carbon nanomaterial-based electrochemical sensors for
biomolecules: A review. Anal. Chim. Acta 2015, 887, 17–37. [CrossRef]

30. Teradal, N.L.; Jelinek, R. Carbon Nanomaterials in Biological Studies and Biomedicine. Adv. Healthc. Mater. 2017, 6, 1700574.
[CrossRef]

31. Mehra, N.K.; Jain, A.K.; Nahar, M. Carbon nanomaterials in oncology: An expanding horizon. Drug Discov. Today 2018, 23,
1016–1025. [CrossRef]

32. MacDonald, I.J.; Dougherty, T.J. Basic principles of photodynamic therapy. J. Porphyr. Phthalocyanines 2001, 5, 105–129. [CrossRef]
33. Sawdon, A.; Weydemeyer, E.; Peng, C.A. Tumor photothermolysis: Using carbon nanomaterials for cancer therapy. Eur. J.

Nanomed. 2013, 5, 131–140. [CrossRef]
34. Augustine, S.; Singh, J.; Srivastava, M.; Sharma, M.; Das, A.; Malhotra, B.D. Recent advances in carbon based nanosystems for

cancer theranostics. Biomater. Sci. 2017, 5, 901–952. [CrossRef] [PubMed]
35. Biagiotti, G.; Fedeli, S.; Tuci, G.; Luconi, L.; Giambastiani, G.; Brandi, A.; Pisaneschi, F.; Cicchi, S.; Paoli, P. Combined therapies

with nanostructured carbon materials: There is room still available at the bottom. J. Mater. Chem. B 2018, 6, 2022–2035. [CrossRef]
[PubMed]

36. Spizzirri, U.G.; Curcio, M.; Cirillo, G.; Spataro, T.; Vittorio, O.; Picci, N.; Hampel, S.; Iemma, F.; Nicoletta, F.P. Recent advances in
the synthesis and biomedical applications of nanocomposite hydrogels. Pharmaceutics 2015, 7, 413–437. [CrossRef] [PubMed]

37. Liu, Z.; Robinson, J.T.; Tabakman, S.M.; Yang, K.; Dai, H.J. Carbon materials for drug delivery & cancer therapy. Mater. Today
2011, 14, 316–323. [CrossRef]

38. Nasir, S.; Hussein, M.Z.; Zainal, Z.; Yusof, N.A. Carbon-based nanomaterials/allotropes: A glimpse of their synthesis, properties
and some applications. Materials 2018, 11, 295. [CrossRef]

http://dx.doi.org/10.1016/j.carbpol.2018.04.087
http://dx.doi.org/10.1056/NEJMoa1204410
http://dx.doi.org/10.1158/0008-5472.CAN-15-2116
http://dx.doi.org/10.2147/IJN.S127349
http://www.ncbi.nlm.nih.gov/pubmed/28331307
http://dx.doi.org/10.3390/cancers12102793
http://www.ncbi.nlm.nih.gov/pubmed/33003374
http://dx.doi.org/10.1039/C9NH00008A
http://dx.doi.org/10.4155/tde-2017-0062
http://dx.doi.org/10.1016/j.bmc.2009.02.043
http://dx.doi.org/10.1016/j.nano.2011.05.016
http://dx.doi.org/10.1039/C2CS15261D
http://dx.doi.org/10.1007/s11095-016-1958-5
http://dx.doi.org/10.1016/j.colsurfb.2018.07.066
http://dx.doi.org/10.1038/nmat4089
http://www.ncbi.nlm.nih.gov/pubmed/25344782
http://dx.doi.org/10.1016/j.jphotochemrev.2012.09.004
http://dx.doi.org/10.3390/ma5020350
http://www.ncbi.nlm.nih.gov/pubmed/28817050
http://dx.doi.org/10.1016/j.mser.2015.07.001
http://dx.doi.org/10.1517/17425247.5.3.331
http://dx.doi.org/10.1002/adma.201802368
http://dx.doi.org/10.1016/j.aca.2015.05.049
http://dx.doi.org/10.1002/adhm.201700574
http://dx.doi.org/10.1016/j.drudis.2017.09.013
http://dx.doi.org/10.1002/jpp.328
http://dx.doi.org/10.1515/ejnm-2013-0006
http://dx.doi.org/10.1039/C7BM00008A
http://www.ncbi.nlm.nih.gov/pubmed/28401206
http://dx.doi.org/10.1039/C8TB00121A
http://www.ncbi.nlm.nih.gov/pubmed/32254426
http://dx.doi.org/10.3390/pharmaceutics7040413
http://www.ncbi.nlm.nih.gov/pubmed/26473915
http://dx.doi.org/10.1016/S1369-7021(11)70161-4
http://dx.doi.org/10.3390/ma11020295


C 2021, 7, 3 15 of 18

39. Vedhanarayanan, B.; Praveen, V.K.; Das, G.; Ajayaghosh, A. Hybrid materials of 1D and 2D carbon allotropes and synthetic
π-systems. NPG Asia Mater. 2018, 10, 107–126. [CrossRef]

40. Wu, Y.F.; Wu, H.C.; Kuan, C.H.; Lin, C.J.; Wang, L.W.; Chang, C.W.; Wang, T.W. Multi-functionalized carbon dots as theranostic
nanoagent for gene delivery in lung cancer therapy. Sci. Rep. 2016, 6, 21170. [CrossRef]

41. Lin, H.S.; Matsuo, Y. Functionalization of [60] fullerene through fullerene cation intermediates. Chem. Commun. 2018, 54,
11244–11259. [CrossRef]

42. Tasis, D.; Tagmatarchis, N.; Bianco, A.; Prato, M. Chemistry of carbon nanotubes. Chem. Rev. 2006, 106, 1105–1136. [CrossRef]
43. Rao, C.N.R.; Sood, A.K.; Subrahmanyam, K.S.; Govindaraj, A. Graphene: The new two-dimensional nanomaterial. Angew. Chem.

Int. Ed. 2009, 48, 7752–7777. [CrossRef] [PubMed]
44. Mochalin, V.N.; Shenderova, O.; Ho, D.; Gogotsi, Y. The properties and applications of nanodiamonds. Nat. Nanotechnol. 2012, 7,

11–23. [CrossRef] [PubMed]
45. Karousis, N.; Suarez-Martinez, I.; Ewels, C.P.; Tagmatarchis, N. Structure, Properties, Functionalization, and Applications of

Carbon Nanohorns. Chem. Rev. 2016, 116, 4850–4883. [CrossRef] [PubMed]
46. Kaur, R.; Badea, I. Nanodiamonds as novel nanomaterials for biomedical applications: Drug delivery and imaging systems. Int. J.

Nanomed. 2013, 8, 203–220. [CrossRef]
47. Liu, K.K.; Cheng, C.L.; Chang, C.C.; Chao, J.I. Biocompatible and detectable carboxylated nanodiamond on human cell.

Nanotechnology 2007, 18, 325102. [CrossRef]
48. Bakry, R.; Vallant, R.M.; Najam-Ul-Haq, M.; Rainer, M.; Szabo, Z.; Huck, C.W.; Bonn, G.K. Medicinal applications of fullerenes.

Int. J. Nanomed. 2007, 2, 639–649.
49. De Volder, M.F.L.; Tawfick, S.H.; Baughman, R.H.; Hart, A.J. Carbon nanotubes: Present and future commercial applications.

Science 2013, 339, 535–539. [CrossRef]
50. Bianco, A.; Kostarelos, K.; Partidos, C.D.; Prato, M. Biomedical applications of functionalised carbon nanotubes. Chem. Commun.

2005, 5, 571–577. [CrossRef]
51. Fabbro, C.; Ali-Boucetta, H.; Ros, T.D.; Kostarelos, K.; Bianco, A.; Prato, M. Targeting carbon nanotubes against cancer. Chem.

Commun. 2012, 48, 3911–3926. [CrossRef]
52. Byun, J. Emerging frontiers of graphene in biomedicine. J. Microbiol. Biotechnol. 2015, 25, 145–151. [CrossRef]
53. Feng, L.; Liu, Z. Graphene in biomedicine: Opportunities and challenges. Nanomedicine 2011, 6, 317–324. [CrossRef] [PubMed]
54. Chung, C.; Kim, Y.K.; Shin, D.; Ryoo, S.R.; Hong, B.H.; Min, D.H. Biomedical applications of graphene and graphene oxide.

Acc. Chem. Res. 2013, 46, 2211–2224. [CrossRef] [PubMed]
55. Chechetka, S.A.; Zhang, M.; Yudasaka, M.; Miyako, E. Physicochemically functionalized carbon nanohorns for multi-dimensional

cancer elimination. Carbon 2016, 97, 45–53. [CrossRef]
56. Cirillo, G.; Peitzsch, C.; Vittorio, O.; Curcio, M.; Farfalla, A.; Voli, F.; Dubrovska, A.; Iemma, F.; Kavallaris, M.; Hampel, S. When

polymers meet carbon nanostructures: Expanding horizons in cancer therapy. Future Med. Chem. 2019, 11, 2205–2231. [CrossRef]
[PubMed]

57. Curcio, M.; Farfalla, A.; Saletta, F.; Valli, E.; Pantuso, E.; Nicoletta, F.P.; Iemma, F.; Vittorio, O.; Cirillo, G. Functionalized carbon
nanostructures versus drug resistance: Promising scenarios in cancer treatment. Molecules 2020, 25, 2102. [CrossRef] [PubMed]

58. Azami, T.; Kasuya, D.; Yuge, R.; Yudasaka, M.; Iijima, S.; Yoshitake, T.; Kubo, Y. Large-scale production of single-wall carbon
nanohorns with high purity. J. Phys. Chem. C 2008, 112, 1330–1334. [CrossRef]

59. Zhu, S.; Xu, G. Single-walled carbon nanohorns and their applications. Nanoscale 2010, 2, 2538–2549. [CrossRef]
60. Chen, D.; Dougherty, C.A.; Zhu, K.; Hong, H. Theranostic applications of carbon nanomaterials in cancer: Focus on imaging and

cargo delivery. J. Control. Release 2015, 210, 230–245. [CrossRef]
61. Ajima, K.; Yudasaka, M.; Murakami, T.; Maigné, A.; Shiba, K.; Iijima, S. Carbon nanohorns as anticancer drug carriers. Mol. Pharm.

2005, 2, 475–480. [CrossRef]
62. Guerra, J.; Herrero, M.A.; Vázquez, E. Carbon nanohorns as alternative gene delivery vectors. RSC Adv. 2014, 4, 27315–27321.

[CrossRef]
63. Almeida, E.R.; De Souza, L.A.; De Almeida, W.B.; Dos Santos, H.F. Molecular dynamics of carbon nanohorns and their complexes

with cisplatin in aqueous solution. J. Mol. Graph. Model. 2019, 89, 167–177. [CrossRef] [PubMed]
64. Li, N.; Zhao, Q.; Shu, C.; Ma, X.; Li, R.; Shen, H.; Zhong, W. Targeted killing of cancer cells in vivo and in vitro with IGF-IR

antibody-directed carbon nanohorns based drug delivery. Int. J. Pharm. 2015, 478, 644–654. [CrossRef] [PubMed]
65. Aryee, E.; Dalai, A.K.; Adjaye, J. Maximization of carbon nanohorns production via the Arc discharge method for hydrotreating

application. J. Nanosci. Nanotechnol. 2017, 17, 4784–4791. [CrossRef]
66. Albert, K.; Hsu, H.Y. Carbon-based materials for photo-triggered theranostic applications. Molecules 2016, 21, 1585. [CrossRef]
67. Kagkoura, A.; Tagmatarchis, N. Carbon nanohorn-based electrocatalysts for energy conversion. Nanomaterials 2020, 10, 1407.

[CrossRef]
68. Zhang, M.; Yudasaka, M.; Ajima, K.; Miyawaki, J.; Iijima, S. Light-assisted oxidation of single-wall carbon nanohorns for abundant

creation of oxygenated groups that enable Chemical modifications with proteins to enhance biocompatibility. ACS Nano 2007, 1,
265–272. [CrossRef]

69. Aryee, E.; Dalai, A.K.; Adjaye, J. Functionalization and characterization of carbon nanohorns (CNHs) for hydrotreating of gas oils.
Top. Catal. 2014, 57, 796–805. [CrossRef]

http://dx.doi.org/10.1038/s41427-018-0017-6
http://dx.doi.org/10.1038/srep21170
http://dx.doi.org/10.1039/C8CC05965A
http://dx.doi.org/10.1021/cr050569o
http://dx.doi.org/10.1002/anie.200901678
http://www.ncbi.nlm.nih.gov/pubmed/19784976
http://dx.doi.org/10.1038/nnano.2011.209
http://www.ncbi.nlm.nih.gov/pubmed/22179567
http://dx.doi.org/10.1021/acs.chemrev.5b00611
http://www.ncbi.nlm.nih.gov/pubmed/27074223
http://dx.doi.org/10.2147/IJN.S37348
http://dx.doi.org/10.1088/0957-4484/18/32/325102
http://dx.doi.org/10.1126/science.1222453
http://dx.doi.org/10.1039/b410943k
http://dx.doi.org/10.1039/c2cc17995d
http://dx.doi.org/10.4014/jmb.1412.12045
http://dx.doi.org/10.2217/nnm.10.158
http://www.ncbi.nlm.nih.gov/pubmed/21385134
http://dx.doi.org/10.1021/ar300159f
http://www.ncbi.nlm.nih.gov/pubmed/23480658
http://dx.doi.org/10.1016/j.carbon.2015.05.077
http://dx.doi.org/10.4155/fmc-2018-0540
http://www.ncbi.nlm.nih.gov/pubmed/31538523
http://dx.doi.org/10.3390/molecules25092102
http://www.ncbi.nlm.nih.gov/pubmed/32365886
http://dx.doi.org/10.1021/jp076365o
http://dx.doi.org/10.1039/c0nr00387e
http://dx.doi.org/10.1016/j.jconrel.2015.04.021
http://dx.doi.org/10.1021/mp0500566
http://dx.doi.org/10.1039/c4ra03251a
http://dx.doi.org/10.1016/j.jmgm.2019.03.015
http://www.ncbi.nlm.nih.gov/pubmed/30903984
http://dx.doi.org/10.1016/j.ijpharm.2014.12.015
http://www.ncbi.nlm.nih.gov/pubmed/25510600
http://dx.doi.org/10.1166/jnn.2017.13447
http://dx.doi.org/10.3390/molecules21111585
http://dx.doi.org/10.3390/nano10071407
http://dx.doi.org/10.1021/nn700130f
http://dx.doi.org/10.1007/s11244-013-0236-6


C 2021, 7, 3 16 of 18

70. Pagona, G.; Tagmatarchis, N.; Fan, J.; Yudasaka, M.; Iijima, S. Cone-end functionalization of carbon nanohorns. Chem. Mater. 2006,
18, 3918–3920. [CrossRef]

71. Sahu, S.R.; Rikka, V.R.; Jagannatham, M.; Haridoss, P.; Chatterjee, A.; Gopalan, R.; Prakash, R. Synthesis of graphene sheets from
single walled carbon nanohorns: Novel conversion from cone to sheet morphology. Mater. Res. Express 2017, 4, 035008. [CrossRef]

72. Yoshida, S.; Sano, M. Microwave-assisted chemical modification of carbon nanohorns: Oxidation and Pt deposition. Chem. Phys.
Lett. 2006, 433, 97–100. [CrossRef]

73. Almeida, E.R.; De Souza, L.A.; De Almeida, W.B.; Dos Santos, H.F. Chemically Modified Carbon Nanohorns as Nanovectors of
the Cisplatin Drug: A Molecular Dynamics Study. J. Chem. Inf. Model. 2020, 60, 500–512. [CrossRef] [PubMed]

74. Agresti, F.; Barison, S.; Famengo, A.; Pagura, C.; Fedele, L.; Rossi, S.; Bobbo, S.; Rancan, M.; Fabrizio, M. Surface oxidation of
single wall carbon nanohorns for the production of surfactant free water-based colloids. J. Colloid Interface Sci. 2018, 514, 528–533.
[CrossRef] [PubMed]

75. Muñiz, J.; Sansores, E.; Olea, A.; Valenzuela, E. The role of aromaticity on the building of nanohybrid materials functionalized
with metalated (Au(III), Ag(III), Cu(III)) extended porphyrins and single-walled carbon nanohorns: A theoretical study. Int. J.
Quantum Chem. 2013, 113, 1034–1046. [CrossRef]

76. Aoyagi, M.; Yudasaka, M.; Minamikawa, H.; Asakawa, M.; Masuda, M.; Shimizu, T.; Iijima, S. Quantitative analyses of PEGylated
phospholipids adsorbed on single walled carbon nanohorns by high resolution magic angle spinning 1H NMR. Carbon 2016, 101,
213–217. [CrossRef]

77. Utsumi, S.; Urita, K.; Kanoh, H.; Yudasaka, M.; Suenaga, K.; Iijima, S.; Kaneko, K. Preparing a magnetically responsive single-wall
carbon nanohorn colloid by anchoring magnetite nanoparticles. J. Phys. Chem. B 2006, 110, 7165–7170. [CrossRef] [PubMed]

78. Tu, W.; Lei, J.; Ding, L.; Ju, H. Sandwich nanohybrid of single-walled carbon nanohorns-TiO2-porphyrin for electrocatalysis and
amperometric biosensing towards chloramphenicol. Chem. Commun. 2009, 28, 4227–4229. [CrossRef]

79. Itoh, T.; Danjo, H.; Sasaki, W.; Urita, K.; Bekyarova, E.; Arai, M.; Imamoto, T.; Yudasaka, M.; Iijima, S.; Kanoh, H.; et al. Catalytic
activities of Pd-tailored single wall carbon nanohorns. Carbon 2008, 46, 172–175. [CrossRef]

80. Liu, Y.; Brown, C.M.; Neumann, D.A.; Geohegan, D.B.; Puretzky, A.A.; Rouleau, C.M.; Hu, H.; Styers-Barnett, D.; Krasnov, P.O.;
Yakobson, B.I. Metal-assisted hydrogen storage on Pt-decorated single-walled carbon nanohorns. Carbon 2012, 50, 4953–4964.
[CrossRef]

81. Mountrichas, G.; Pispas, S.; Ichihasi, T.; Yudasaka, M.; Iijima, S.; Tagmatarchis, N. Polymer covalent functionalization of carbon
nanohorns using bulk free radical polymerization. Chem. A Eur. J. 2010, 16, 5927–5933. [CrossRef]

82. Ajima, K.; Yudasaka, M.; Suenaga, K.; Kasuya, D.; Azami, T.; Iijima, S. Material Storage Mechanism in Porous Nanocarbon. Adv.
Mater. 2004, 16, 397–401. [CrossRef]

83. Yuge, R.; Ichihashi, T.; Shimakawa, Y.; Kubo, Y.; Yudasaka, M.; Iijima, S. Preferential deposition of Pt nanoparticles inside
single-walled carbon nanohorns. Adv. Mater. 2004, 16, 1420–1423. [CrossRef]

84. Miyawaki, J.; Matsumura, S.; Yuge, R.; Murakami, T.; Sato, S.; Tomida, A.; Tsuruo, T.; Ichihashi, T.; Fujinami, T.; Irie, H.; et al.
Biodistribution and ultrastructural localization of single-walled carbon nanohorns determined in vivo with embedded Gd2O3
labels. ACS Nano 2009, 3, 1399–1406. [CrossRef] [PubMed]

85. Miyawaki, J.; Yudasaka, M.; Azami, T.; Kubo, Y.; Iijima, S. Toxicity of single-walled carbon nanohorns. ACS Nano 2008, 2, 213–226.
[CrossRef] [PubMed]

86. Moreno-Lanceta, A.; Medrano-Bosch, M.; Melgar-Lesmes, P. Single-walled carbon nanohorns as promising nanotube-derived
delivery systems to treat cancer. Pharmaceutics 2020, 12, 850. [CrossRef]

87. Hifni, B.; Khan, M.; Devereux, S.J.; Byrne, M.H.; Quinn, S.J.; Simpson, J.C. Investigation of the Cellular Destination of Fluorescently
Labeled Carbon Nanohorns in Cultured Cells. ACS Appl. Bio Mater. 2020, 3, 6790–6801. [CrossRef]

88. Schramm, F.; Lange, M.; Hoppmann, P.; Heutelbeck, A. Cytotoxicity of carbon nanohorns in different human cells of the
respiratory system. J. Toxicol. Environ. Health Part. A 2016, 79, 1085–1093. [CrossRef]

89. Lynch, R.M.; Voy, B.H.; Glass, D.F.; Mahurin, S.M.; Zhao, B.; Hu, H.; Saxton, A.M.; Donnell, R.L.; Cheng, M.D. Assessing the
pulmonary toxicity of single-walled carbon nanohorns. Nanotoxicology 2007, 1, 157–166. [CrossRef]

90. Tahara, Y.; Miyawaki, J.; Zhang, M.; Yang, M.; Waga, I.; Iijima, S.; Irie, H.; Yudasaka, M. Histological assessments for toxicity and
functionalization-dependent biodistribution of carbon nanohorns. Nanotechnology 2011, 22, 265106. [CrossRef]

91. He, B.; Shi, Y.; Liang, Y.; Yang, A.; Fan, Z.; Yuan, L.; Zou, X.; Chang, X.; Zhang, H.; Wang, X.; et al. Single-walled carbon-
nanohorns improve biocompatibility over nanotubes by triggering less protein-initiated pyroptosis and apoptosis in macrophages.
Nat. Commun. 2018, 9, 1–21. [CrossRef]

92. Zhang, M.; Yamaguchi, T.; Iijima, S.; Yudasaka, M. Size-dependent biodistribution of carbon nanohorns in vivo. Nanomed.
Nanotechnol. Biol. Med. 2013, 9, 657–664. [CrossRef]

93. Li, Y.; Zhang, J.; Zhao, M.; Shi, Z.; Chen, X.; He, X.; Han, N.; Xu, R. Single-wall carbon nanohorns (SWNHs) inhibited proliferation
of human glioma cells and promoted its apoptosis. J. Nanoparticle Res. 2013, 15, 1861. [CrossRef]

94. Nowacki, M.; Wisniewski, M.; Werengowska-Ciecwierz, K.; Roszek, K.; Czarnecka, J.; Lakomska, I.; Kloskowski, T.; Tyloch,
D.; Debski, R.; Pietkun, K.; et al. Nanovehicles as a novel target strategy for hyperthermic intraperitoneal chemotherapy: A
multidisciplinary study of peritoneal carcinomatosis. Oncotarget 2015, 6, 22776–22798. [CrossRef] [PubMed]
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