262 research outputs found

    Public health impact and return on investment of Belgium’s pediatric immunization program

    Get PDF
    ObjectiveWe evaluated the public health impact and return on investment of Belgium’s pediatric immunization program (PIP) from both healthcare-sector and societal perspectives.MethodsWe developed a decision analytic model for 6 vaccines routinely administered in Belgium for children aged 0–10 years: DTaP-IPV-HepB-Hib, DTaP-IPV, MMR, PCV, rotavirus, and meningococcal type C. We used separate decision trees to model each of the 11 vaccine-preventable pathogens: diphtheria, tetanus, pertussis, poliomyelitis, Haemophilus influenzae type b, measles, mumps, rubella, Streptococcus pneumoniae, rotavirus, and meningococcal type C; hepatitis B was excluded because of surveillance limitations. The 2018 birth cohort was followed over its lifetime. The model projected and compared health outcomes and costs with and without immunization (based on vaccine-era and pre–vaccine era disease incidence estimates, respectively), assuming that observed reductions in disease incidence were fully attributable to vaccination. For the societal perspective, the model included productivity loss costs associated with immunization and disease in addition to direct medical costs. The model estimated discounted cases averted, disease-related deaths averted, life-years gained, quality-adjusted life-years gained, costs (2020 euros), and an overall benefit–cost ratio. Scenario analyses considered alternate assumptions for key model inputs.ResultsAcross all 11 pathogens, we estimated that the PIP prevented 226,000 cases of infections and 200 deaths, as well as the loss of 7,000 life-years and 8,000 quality-adjusted life-years over the lifetime of a birth cohort of 118,000 children. The PIP was associated with discounted vaccination costs of €91 million from the healthcare-sector perspective and €122 million from the societal perspective. However, vaccination costs were more than fully offset by disease-related costs averted, with the latter amounting to a discounted €126 million and €390 million from the healthcare-sector and societal perspectives, respectively. As a result, pediatric immunization was associated with overall discounted savings of €35 million and €268 million from the healthcare-sector and societal perspectives, respectively; every €1 invested in childhood immunization resulted in approximately €1.4 in disease-related cost savings to the health system and €3.2 in cost savings from a societal perspective for Belgium’s PIP. Estimates of the value of the PIP were most sensitive to changes in input assumptions for disease incidence, productivity losses due to disease-related mortality, and direct medical disease costs.ConclusionBelgium’s PIP, which previously had not been systematically assessed, provides large-scale prevention of disease-related morbidity and premature mortality, and is associated with net savings to health system and society. Continued investment in the PIP is warranted to sustain its positive public health and financial impact

    Malaria and Iron Load at the First Antenatal Visit in the Rural South Kivu, Democratic Republic of the Congo: Is Iron Supplementation Safe or Could It Be Harmful?

    Get PDF
    We investigated the relationship between malaria infection and iron status in 531 pregnant women in South Kivu, Democratic Republic of the Congo. Sociodemographic data, information on morbidity, and clinical data were collected. A blood sample was collected at the first antenatal visit to diagnose malaria and measure serum ferritin (SF), soluble transferrin receptor, C-reactive protein, and α1-acid-glycoprotein. Malaria prevalence was 7.5%. Median (interquartile range) SF (adjusted for inflammation) was significantly higher in malaria-infected (82.9 μg/L [56.3-130.4]) than in non-infected (39.8 μg/L [23.6-60.8]) women (P < 0.001). Similarly, estimated mean body iron store was higher in malaria-infected women (P < 0.001). Malaria was significantly and independently associated with high levels of SF. Efforts to improve malaria prevention while correcting iron deficiency and anemia during pregnancy are warranted

    Closing a gap in tropical forest biomass estimation : taking crown mass variation into account in pantropical allometries

    Get PDF
    Accurately monitoring tropical forest carbon stocks is a challenge that remains outstanding. Allometric models that consider tree diameter, height and wood density as predictors are currently used in most tropical forest carbon studies. In particular, a pantropical biomass model has been widely used for approximately a decade, and its most recent version will certainly constitute a reference model in the coming years. However, this reference model shows a systematic bias towards the largest trees. Because large trees are key drivers of forest carbon stocks and dynamics, understanding the origin and the consequences of this bias is of utmost concern. In this study, we compiled a unique tree mass data set of 673 trees destructively sampled in five tropical countries (101 trees > 100 cm in diameter) and an original data set of 130 forest plots (1 ha) from central Africa to quantify the prediction error of biomass allometric models at the individual and plot levels when explicitly taking crown mass variations into account or not doing so. We first showed that the proportion of crown to total tree aboveground biomass is highly variable among trees, ranging from 3 to 88 %. This proportion was constant on average for trees = 45 Mg. This increase coincided with a progressive deviation between the pantropical biomass model estimations and actual tree mass. Taking a crown mass proxy into account in a newly developed model consistently removed the bias observed for large trees (> 1 Mg) and reduced the range of plot- level error (in %) from [-23; 16] to [0; 10]. The disproportionally higher allocation of large trees to crown mass may thus explain the bias observed recently in the reference pantropical model. This bias leads to far- from- negligible, but often overlooked, systematic errors at the plot level and may be easily corrected by taking a crown mass proxy for the largest trees in a stand into account, thus suggesting that the accuracy of forest carbon estimates can be significantly improved at a minimal cost

    Appropriateness for SARS-CoV-2 vaccination for otolaryngologist and head and neck surgeons in case of pregnancy, breastfeeding, or childbearing potential: Yo-IFOS and CEORL-HNS joint clinical consensus statement

    Full text link
    Purpose SARS-CoV-2 vaccines are a key step in fighting the pandemic. Nevertheless, their rapid development did not allow for testing among specific population subgroups such as pregnant and breastfeeding women, or elaborating specific guidelines for healthcare personnel working in high infection risk specialties, such as otolaryngology (ORL). This clinical consensus statement (CCS) aims to offer guidance for SARS-CoV-2 vaccination to this high-risk population based on the best evidence available. Methods A multidisciplinary international panel of 33 specialists judged statements through a two-round modified Delphi method survey. Statements were designed to encompass the following topics: risk of SARS-Cov-2 infection and use of protective equipment in ORL; SARS-Cov-2 infection and vaccines and respective risks for the mother/child dyad; and counseling for SARS-CoV-2 vaccination in pregnant, breastfeeding, or fertile healthcare workers (PBFHW). All ORL PBFHW were considered as the target audience. Results Of the 13 statements, 7 reached consensus or strong consensus, 2 reached no consensus, and 2 reached near-consensus. According to the statements with strong consensus otorhinolaryngologists-head and neck surgeons who are pregnant, breastfeeding, or with childbearing potential should have the opportunity to receive SARS-Cov-2 vaccination. Moreover, personal protective equipment (PPE) should still be used even after the vaccination. Conclusion Until prospective evaluations on these topics are available, ORL-HNS must be considered a high infection risk specialty. While the use of PPE remains pivotal, ORL PBFHW should be allowed access to SARS-CoV-2 vaccination provided they receive up-to-date information

    Monitoring of human coronaviruses in Belgian primary care and hospitals, 2015-20: a surveillance study.

    Get PDF
    BACKGROUND: Seasonal human coronaviruses (hCoVs) broadly circulate in humans. Their epidemiology and effect on the spread of emerging coronaviruses has been neglected thus far. We aimed to elucidate the epidemiology and burden of disease of seasonal hCoVs OC43, NL63, and 229E in patients in primary care and hospitals in Belgium between 2015 and 2020. METHODS: We retrospectively analysed data from the national influenza surveillance networks in Belgium during the winter seasons of 2015-20. Respiratory specimens were collected through the severe acute respiratory infection (SARI) and the influenza-like illness networks from patients with acute respiratory illness with onset within the previous 10 days, with measured or reported fever of 38°C or greater, cough, or dyspnoea; and for patients admitted to hospital for at least one night. Potential risk factors were recorded and patients who were admitted to hospital were followed up for the occurrence of complications or death for the length of their hospital stay. All samples were analysed by multiplex quantitative RT-PCRs for respiratory viruses, including seasonal hCoVs OC43, NL63, and 229E. We estimated the prevalence and incidence of seasonal hCoV infection, with or without co-infection with other respiratory viruses. We evaluated the association between co-infections and potential risk factors with complications or death in patients admitted to hospital with seasonal hCoV infections by age group. Samples received from week 8, 2020, were tested for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). FINDINGS: 2573 primary care and 6494 hospital samples were included in the study. 161 (6·3%) of 2573 patients in primary care and 371 (5·7%) of 6494 patients admitted to hospital were infected with a seasonal hCoV. OC43 was the seasonal hCoV with the highest prevalence across age groups and highest incidence in children admitted to hospital who were younger than 5 years (incidence 9·0 [95% CI 7·2-11·2] per 100 000 person-months) and adults older than 65 years (2·6 [2·1-3·2] per 100 000 person-months). Among 262 patients admitted to hospital with seasonal hCoV infection and with complete information on potential risk factors, 66 (73·3%) of 90 patients who had complications or died also had at least one potential risk factor (p=0·0064). Complications in children younger than 5 years were associated with co-infection (24 [36·4%] of 66; p=0·017), and in teenagers and adults (≥15 years), more complications arose in patients with a single hCoV infection (49 [45·0%] of 109; p=0·0097). In early 2020, the Belgian SARI surveillance detected the first SARS-CoV-2-positive sample concomitantly with the first confirmed COVID-19 case with no travel history to China. INTERPRETATION: The main burden of severe seasonal hCoV infection lies with children younger than 5 years with co-infections and adults aged 65 years and older with pre-existing comorbidities. These age and patient groups should be targeted for enhanced observation when in medical care and in possible future vaccination strategies, and co-infections in children younger than 5 years should be considered during diagnosis and treatment. Our findings support the use of national influenza surveillance systems for seasonal hCoV monitoring and early detection, and monitoring of emerging coronaviruses such as SARS-CoV-2. FUNDING: Belgian Federal Public Service Health, Food Chain Safety, and Environment; Belgian National Insurance Health Care (Institut national d'assurance maladie-invalidité/Rijksinstituut voor ziekte-en invaliditeitsverzekering); and Regional Health Authorities (Flanders Agentschap zorg en gezondheid, Brussels Commission communautaire commune, Wallonia Agence pour une vie de qualité)
    • …
    corecore