758 research outputs found
Hybrid chiral domain walls and skyrmions in magnetic multilayers
Noncollinear spin textures in ferromagnetic ultrathin films are currently the
subject of renewed interest since the discovery of the interfacial
Dzyaloshinskii-Moriya interaction (DMI). This antisymmetric exchange
interaction selects a given chirality for the spin textures and allows
stabilising configurations with nontrivial topology. Moreover, it has many
crucial consequences on the dynamical properties of these topological
structures, including chiral domain walls (DWs) and magnetic skyrmions. In the
recent years the study of noncollinear spin textures has been extended from
single ultrathin layers to magnetic multilayers with broken inversion symmetry.
This extension of the structures in the vertical dimension allows very
efficient current-induced motion and room-temperature stability for both N\'eel
DWs and skyrmions. Here we show how in such multilayered systems the interlayer
interactions can actually lead to more complex, hybrid chiral magnetisation
arrangements. The described thickness-dependent reorientation of DWs is
experimentally confirmed by studying demagnetised multilayers through circular
dichroism in x-ray resonant magnetic scattering. We also demonstrate a simple
yet reliable method for determining the magnitude of the DMI from static
domains measurements even in the presence of these hybrid chiral structures, by
taking into account the actual profile of the DWs. The advent of these novel
hybrid chiral textures has far-reaching implications on how to stabilise and
manipulate DWs as well as skymionic structures in magnetic multilayers.Comment: 22 pages, 5 figure
Une approche sociocritique des usages numériques en éducation
International audienceThis article aims to contribute to formalize a sociocritical approach of digital technology in education. Such a sociocritical approach focuses on the relationships between students’ sociocultural profiles and contexts, and their disposition to learn with digital technology. This approach lies at the crossroads of sociology of use, on the one hand, which has granted little attention to educational uses of digital technology, and, on the other hand, education sciences, which have mainly considered educational uses of digital technology within the school context. It is part of the theme of educational uses of digital technology (Baron, 2014) and it is complementary to didactic and psychopedagogical approaches of digital technology, which are more commonly used. We first explain the foundation of this approach of digital technology in education. We then present an overview of three main research interests of this approach, before discussing its methodological implications, its complementarity with educational technology approaches and the challenges that are raised.■ RÉSUMÉ • Cet article a pour objectif de contribuer à formaliser une approche sociocritique du numérique en éducation. Telle que nous la concevons, cette approche consiste à étudier les relations entre le profil et le contexte socioculturel des élèves et leur disposition à s'éduquer et se former avec le numérique. Elle se situe au croisement, d'une part, de la sociologie des usages, qui a peu développé les dimensions éducatives du numérique, et d'autre part, des sciences de l'éducation, qui ont faiblement mis en lien les usages numériques proposés aux élèves en salle de classe avec ceux développés en contexte extrascolaire. Elle s'inscrit dans la thé-matique des usages numériques éducatifs, telle que circonscrite par (Baron , 2014), et se veut complémentaire aux approches didactique et psychopédagogique majoritairement utilisées. Nous commençons par expliciter les fondements de cette approche. Nous présentons ensuite un aperçu de trois de ses thématiques saillantes, avant d'aborder ses implications méthodologiques et sa complémentarité avec les approches didacti-que et psychopédagogique, ainsi que les principaux défis qu'elle doit relever. ■ MOTS-CLÉS • Approche sociocritique, rapport éducatif au numérique, contexte extrascolaire
Electrical signature of individual magnetic skyrmions in multilayered systems
Magnetic skyrmions are topologically protected whirling spin textures that
can be stabilized in magnetic materials in which a chiral interaction is
present. Their limited size together with their robustness against the external
perturbations promote them as the ultimate magnetic storage bit in a novel
generation of memory and logic devices. Despite many examples of the signature
of magnetic skyrmions in the electrical signal, only low temperature
measurements, mainly in magnetic materials with B20 crystal structure, have
demonstrated the skyrmions contribution to the electrical transport properties.
Using the combination of Magnetic Force Microscopy (MFM) and Hall resistivity
measurements, we demonstrate the electrical detection of sub-100 nm skyrmions
in multilayered thin film at room temperature (RT). We furthermore analyse the
room temperature Hall signal of a single skyrmion which contribution is mainly
dominated by anomalous Hall effect.Comment: 13 pages, 4 figure
Contrasting nutritional acclimation of sugar maple (Acer saccharum Marsh.) and red maple (Acer rubrum L.) to increasing conifers and soil acidity as demonstrated by foliar nutrient balances
Sugar maple (Acer saccharum Marshall, SM) is believed to be more sensitive to acidic and nutrient-poor soils associated with conifer-dominated stands than red maple (Acer rubrum L., RM). Greater foliar nutrient use efficiency (FNUE) of RM is likely the cause for this difference. In the context of climate change, this greater FNUE could be key in favoring northward migration of RM over SM. We used the concept of foliar nutrient balances to study the nutrition of SM and RM seedlings along an increasing gradient in forest floor acidity conditioned by increasing proportions of conifers (pH values ranging from 4.39 under hardwoods, to 4.29 under mixed hardwood-conifer stands and 4.05 under conifer-dominated stands). Nutrients were subjected to isometric log-ratio (ilr) transformation, which views the leaf as one closed system and considers interactions between nutrients. The ilr method eliminates numerical biases and weak statistical inferences based on raw or “operationally” log-transformed data. We analyzed foliar nutrients of SM and RM seedlings and found that the [Ca,Mg,K| P,N] and [Ca,Mg| K] balances of SM seedlings were significantly different among soil acidity levels, whereas they did not vary for RM seedlings. For SM seedlings, these differences among soil acidity levels were due to a significant decrease in foliar Ca and Mg concentrations with increasing forest floor acidity. Similar differences in foliar balances were also found between healthy and declining SM stands estimated from literature values. Conversely, foliar balances of RM seedlings did not differ among soil acidity levels, even though untransformed foliar nutrient concentrations were significantly different. This result highlights the importance of using ilr transformation, since it provides more sensitive results than standard testing of untransformed nutrient concentrations. The lower nutrient requirements of RM and its greater capacity to maintain nutrient equilibrium are factors that could explain its competitive success and recent northward expansion. This study underscores the importance of using nutrient balances to study the redistribution of plant species in natural ecosystems under climate change
Targeted Nasal Vaccination Provides Antibody-Independent Protection Against Staphylococcus aureus
Despite showing promise in preclinical models, anti-Staphylococcus aureus vaccines have failed in clinical trials. To date, approaches have focused on neutralizing/opsonizing antibodies; however, vaccines exclusively inducing cellular immunity have not been studied to formally test whether a cellular-only response can protect against infection. We demonstrate that nasal vaccination with targeted nanoparticles loaded with Staphylococcus aureus antigen protects against acute systemic S. aureus infection in the absence of any antigen-specific antibodies. These findings can help inform future developments in staphylococcal vaccine development and studies into the requirements for protective immunity against S. aureu
The Maunakea Spectroscopic Explorer Book 2018
(Abridged) This is the Maunakea Spectroscopic Explorer 2018 book. It is
intended as a concise reference guide to all aspects of the scientific and
technical design of MSE, for the international astronomy and engineering
communities, and related agencies. The current version is a status report of
MSE's science goals and their practical implementation, following the System
Conceptual Design Review, held in January 2018. MSE is a planned 10-m class,
wide-field, optical and near-infrared facility, designed to enable
transformative science, while filling a critical missing gap in the emerging
international network of large-scale astronomical facilities. MSE is completely
dedicated to multi-object spectroscopy of samples of between thousands and
millions of astrophysical objects. It will lead the world in this arena, due to
its unique design capabilities: it will boast a large (11.25 m) aperture and
wide (1.52 sq. degree) field of view; it will have the capabilities to observe
at a wide range of spectral resolutions, from R2500 to R40,000, with massive
multiplexing (4332 spectra per exposure, with all spectral resolutions
available at all times), and an on-target observing efficiency of more than
80%. MSE will unveil the composition and dynamics of the faint Universe and is
designed to excel at precision studies of faint astrophysical phenomena. It
will also provide critical follow-up for multi-wavelength imaging surveys, such
as those of the Large Synoptic Survey Telescope, Gaia, Euclid, the Wide Field
Infrared Survey Telescope, the Square Kilometre Array, and the Next Generation
Very Large Array.Comment: 5 chapters, 160 pages, 107 figure
Evidence of genetic epistasis in autoimmune diabetes susceptibility revealed by mouse congenic sublines
Susceptibility to autoimmune diabetes is a complex genetic trait. Linkage analyses exploiting the NOD mouse, which spontaneously develops autoimmune diabetes, have proved to be a useful tool for the characterization of some of these traits. In a linkage analysis using 3A9 TCR transgenic mice on both B10.BR and NOD.H2k backgrounds, we previously determined that both the Idd2 and Idd13 loci were linked to the proportion of immunoregulatory CD4-CD8- double negative (DN) T cells. In addition to Idd2 and Idd13, five other loci showed weak linkage to the proportion of DN T cells. Of interest, in an interim analysis, a locus on chromosome 12 is linked to DN T cell proportion in both the spleen and the lymph nodes. To determine the impact of this locus on DN T cells, we generated two congenic sublines, which we named Chr12P and Chr12D for proximal and distal, respectively. While 3A9 TCR:insHEL NOD.H2k-Chr12D mice were protected from diabetes, 3A9 TCR:insHEL NOD.H2k-Chr12P showed an increase in diabetes incidence. Yet, the proportion of DN T cells was similar to the parental 3A9 TCR NOD.H2k strain for both of these congenic sublines. A genome-wide two dimensional LOD score analysis reveals genetic epistasis between chromosome 12 and the Idd13 locus. Altogether, this study identified further complex genetic interactions in defining the proportion of DN T cells, along with evidence of genetic epistasis within a locus on chromosome 12 influencing autoimmune susceptibility
ERAU\u27s First Suborbital Payload for Cell Research
Commercial Space Operations and Aerospace Engineering students from Embry-Riddle are working with students and faculty from the University of Texas Health Science Center at San Antonio and Medical University of South Carolina to launch a suborbital payload onboard Blue Origin’s New Shepard rocket during the summer of 2017. This NanoLab experiment, exposed to microgravity, will consist of T-cells primed with different cytokines that may help us expand our understanding of future treatments for terminal diseases. The first team, Operations team, is conducting the physical testing of the NanoLab by measuring the survivability of the payload under extreme conditions of the suborbital flight. This team is developing operational procedures and data collection guidelines for the different mission phases. The data collected includes accelerations in the X, Y, and Z directions, temperature, and relative humidity. The Engineering team is in charge of the design, analysis and development of the 2U cube-structure that will house the experiment and will be capable of withstanding the forces experienced during the suborbital mission
Down selecting adjuvanted vaccine formulations: a comparative method for harmonized evaluation.
The need for rapid and accurate comparison of panels of adjuvanted vaccine formulations and subsequent rational down selection, presents several challenges for modern vaccine development. Here we describe a method which may enable vaccine and adjuvant developers to compare antigen/adjuvant combinations in a harmonized fashion. Three reference antigens: Plasmodium falciparum apical membrane antigen 1 (AMA1), hepatitis B virus surface antigen (HBsAg), and Mycobacterium tuberculosis antigen 85A (Ag85A), were selected as model antigens and were each formulated with three adjuvants: aluminium oxyhydroxide, squalene-in-water emulsion, and a liposome formulation mixed with the purified saponin fraction QS21.
The nine antigen/adjuvant formulations were assessed for stability and immunogenicity in mice in order to provide benchmarks against which other formulations could be compared, in order to assist subsequent down selection of adjuvanted vaccines. Furthermore, mouse cellular immune responses were analyzed by measuring IFN-γ and IL-5 production in splenocytes by ELISPOT, and humoral responses were determined by antigen-specific ELISA, where levels of total IgG, IgG1, IgG2b and IgG2c in serum samples were determined.
The reference antigens and adjuvants described in this study, which span a spectrum of immune responses, are of potential use as tools to act as points of reference in vaccine development studies. The harmonized methodology described herein may be used as a tool for adjuvant/antigen comparison studies
- …
