38 research outputs found

    Evaluation of wetland CH4 in the Joint UK Land Environment Simulator (JULES) land surface model using satellite observations

    Get PDF
    Wetlands are the largest natural source of methane. The ability to model the emissions of methane from natural wetlands accurately is critical to our understanding of the global methane budget and how it may change under future climate scenarios. The simulation of wetland methane emissions involves a complicated system of meteorological drivers coupled to hydrological and biogeochemical processes. The Joint UK Land Environment Simulator (JULES) is a process-based land surface model that underpins the UK Earth System Model (UKESM) and is capable of generating estimates of wetland methane emissions. In this study, we use GOSAT satellite observations of atmospheric methane along with the TOMCAT global 3-D chemistry transport model to evaluate the performance of JULES in reproducing the seasonal cycle of methane over a wide range of tropical wetlands. By using an ensemble of JULES simulations with differing input data and process configurations, we investigate the relative importance of the meteorological driving data, the vegetation, the temperature dependency of wetland methane production and the wetland extent. We find that JULES typically performs well in replicating the observed methane seasonal cycle. We calculate correlation coefficients to the observed seasonal cycle of between 0.58 and 0.88 for most regions; however, the seasonal cycle amplitude is typically underestimated (by between 1.8 and 19.5 ppb). This level of performance is comparable to that typically provided by state-of-the-art data-driven wetland CH4 emission inventories. The meteorological driving data are found to be the most significant factor in determining the ensemble performance, with temperature dependency and vegetation having moderate effects. We find that neither wetland extent configuration outperforms the other, but this does lead to poor performance in some regions. We focus in detail on three African wetland regions (Sudd, Southern Africa and Congo) where we find the performance of JULES to be poor and explore the reasons for this in detail. We find that neither wetland extent configuration used is sufficient in representing the wetland distribution in these regions (underestimating the wetland seasonal cycle amplitude by 11.1, 19.5 and 10.1 ppb respectively, with correlation coefficients of 0.23, 0.01 and 0.31). We employ the Catchment-based Macro-scale Floodplain (CaMa-Flood) model to explicitly represent river and floodplain water dynamics and find that these JULES-CaMa-Flood simulations are capable of providing a wetland extent that is more consistent with observations in this regions, highlighting this as an important area for future model development.</p

    Effects of frozen soil on soil temperature, spring infiltration, and runoff: results from the PILPS 2(d) experiment at Valdai, Russia

    Get PDF
    Permission to place copies of these works on this server has been provided by the American Meteorological Society (AMS). The AMS does not guarantee that the copies provided here are accurate copies of the published work. © Copyright 2003 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be “fair use” under Section 107 of the U.S. Copyright Act or that satisfies the conditions specified in Section 108 of the U.S. Copyright Act (17 USC §108, as revised by P.L. 94-553) does not require the AMS’s permission. Republication, systematic reproduction, posting in electronic form on servers, or other uses of this material, except as exempted by the above statement, requires written permission or a license from the AMS. Additional details are provided in the AMS Copyright Policy, available on the AMS Web site located at (http://www.ametsoc.org/AMS) or from the AMS at 617-227-2425 or [email protected] Project for Intercomparison of Land-Surface Parameterization Schemes phase 2(d) experiment at Valdai, Russia, offers a unique opportunity to evaluate land surface schemes, especially snow and frozen soil parameterizations. Here, the ability of the 21 schemes that participated in the experiment to correctly simulate the thermal and hydrological properties of the soil on several different timescales was examined. Using observed vertical profiles of soil temperature and soil moisture, the impact of frozen soil schemes in the land surface models on the soil temperature and soil moisture simulations was evaluated. It was found that when soil-water freezing is explicitly included in a model, it improves the simulation of soil temperature and its variability at seasonal and interannual scales. Although change of thermal conductivity of the soil also affects soil temperature simulation, this effect is rather weak. The impact of frozen soil on soil moisture is inconclusive in this experiment due to the particular climate at Valdai, where the top 1 m of soil is very close to saturation during winter and the range for soil moisture changes at the time of snowmelt is very limited. The results also imply that inclusion of explicit snow processes in the models would contribute to substantially improved simulations. More sophisticated snow models based on snow physics tend to produce better snow simulations, especially of snow ablation. Hysteresis of snow-cover fraction as a function of snow depth is observed at the catchment but not in any of the models

    Effects of Frozen Soil on Soil Temperature, Spring Infiltration, and Runoff: Results from the PILPS 2(d) Experiment at Valdai, Russia

    Get PDF
    The Project for Intercomparison of Land-Surface Parameterization Schemes phase 2(d) experiment at Valdai, Russia, offers a unique opportunity to evaluate land surface schemes, especially snow and frozen soil parameterizations. Here, the ability of the 21 schemes that participated in the experiment to correctly simulate the thermal and hydrological properties of the soil on several different timescales was examined. Using observed vertical profiles of soil temperature and soil moisture, the impact of frozen soil schemes in the land surface models on the soil temperature and soil moisture simulations was evaluated. It was found that when soil-water freezing is explicitly included in a model, it improves the simulation of soil temperature and its variability at seasonal and interannual scales. Although change of thermal conductivity of the soil also affects soil temperature simulation, this effect is rather weak. The impact of frozen soil on soil moisture is inconclusive in this experiment due to the particular climate at Valdai, where the top 1 m of soil is very close to saturation during winter and the range for soil moisture changes at the time of snowmelt is very limited. The results also imply that inclusion of explicit snow processes in the models would contribute to substantially improved simulations. More sophisticated snow models based on snow physics tend to produce better snow simulations, especially of snow ablation. Hysteresis of snow-cover fraction as a function of snow depth is observed at the catchment but not in any of the models

    The representation of snow in land surface schemes: results from PILPS 2(d)

    Get PDF
    Permission to place copies of these works on this server has been provided by the American Meteorological Society (AMS). The AMS does not guarantee that the copies provided here are accurate copies of the published work. © Copyright 2001 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be “fair use” under Section 107 of the U.S. Copyright Act or that satisfies the conditions specified in Section 108 of the U.S. Copyright Act (17 USC §108, as revised by P.L. 94-553) does not require the AMS’s permission. Republication, systematic reproduction, posting in electronic form on servers, or other uses of this material, except as exempted by the above statement, requires written permission or a license from the AMS. Additional details are provided in the AMS Copyright Policy, available on the AMS Web site located at (http://www.ametsoc.org/AMS) or from the AMS at 617-227-2425 or [email protected] land surface schemes (LSSs) performed simulations forced by 18 yr of observed meteorological data from a grassland catchment at Valdai, Russia, as part of the Project for the Intercomparison of Land-Surface Parameterization Schemes (PILPS) Phase 2(d). In this paper the authors examine the simulation of snow. In comparison with observations, the models are able to capture the broad features of the snow regime on both an intra- and interannual basis. However, weaknesses in the simulations exist, and early season ablation events are a significant source of model scatter. Over the 18-yr simulation, systematic differences between the models’ snow simulations are evident and reveal specific aspects of snow model parameterization and design as being responsible. Vapor exchange at the snow surface varies widely among the models, ranging from a large net loss to a small net source for the snow season. Snow albedo, fractional snow cover, and their interplay have a large effect on energy available for ablation, with differences among models most evident at low snow depths. The incorporation of the snowpack within an LSS structure affects the method by which snow accesses, as well as utilizes, available energy for ablation. The sensitivity of some models to longwave radiation, the dominant winter radiative flux, is partly due to a stability-induced feedback and the differing abilities of models to exchange turbulent energy with the atmosphere. Results presented in this paper suggest where weaknesses in macroscale snow modeling lie and where both theoretical and observational work should be focused to address these weaknesses

    Evaluation of wetland CH4 in the Joint UK Land Environment Simulator (JULES) land surface model using satellite observations

    Get PDF
    Wetlands are the largest natural source of methane. The ability to model the emissions of methane from natural wetlands accurately is critical to our understanding of the global methane budget and how it may change under future climate scenarios. The simulation of wetland methane emissions involves a complicated system of meteorological drivers coupled to hydrological and biogeochemical processes. The Joint UK Land Environment Simulator (JULES) is a process-based land surface model that underpins the UK Earth System Model (UKESM) and is capable of generating estimates of wetland methane emissions. In this study, we use GOSAT satellite observations of atmospheric methane along with the TOMCAT global 3-D chemistry transport model to evaluate the performance of JULES in reproducing the seasonal cycle of methane over a wide range of tropical wetlands. By using an ensemble of JULES simulations with differing input data and process configurations, we investigate the relative importance of the meteorological driving data, the vegetation, the temperature dependency of wetland methane production and the wetland extent. We find that JULES typically performs well in replicating the observed methane seasonal cycle. We calculate correlation coefficients to the observed seasonal cycle of between 0.58 and 0.88 for most regions; however, the seasonal cycle amplitude is typically underestimated (by between 1.8 and 19.5 ppb). This level of performance is comparable to that typically provided by state-of-the-art data-driven wetland CH4 emission inventories. The meteorological driving data are found to be the most significant factor in determining the ensemble performance, with temperature dependency and vegetation having moderate effects. We find that neither wetland extent configuration outperforms the other, but this does lead to poor performance in some regions. We focus in detail on three African wetland regions (Sudd, Southern Africa and Congo) where we find the performance of JULES to be poor and explore the reasons for this in detail. We find that neither wetland extent configuration used is sufficient in representing the wetland distribution in these regions (underestimating the wetland seasonal cycle amplitude by 11.1, 19.5 and 10.1 ppb respectively, with correlation coefficients of 0.23, 0.01 and 0.31). We employ the Catchment-based Macro-scale Floodplain (CaMa-Flood) model to explicitly represent river and floodplain water dynamics and find that these JULES-CaMa-Flood simulations are capable of providing a wetland extent that is more consistent with observations in this regions, highlighting this as an important area for future model development

    Global wetland contribution to 2000-2012 atmospheric methane growth rate dynamics

    Get PDF
    Increasing atmospheric methane (CH4) concentrations have contributed to approximately 20% of anthropogenic climate change. Despite the importance of CH4 as a greenhouse gas, its atmospheric growth rate and dynamics over the past two decades, which include a stabilization period (1999–2006), followed by renewed growth starting in 2007, remain poorly understood. We provide an updated estimate of CH4 emissions from wetlands, the largest natural global CH4 source, for 2000–2012 using an ensemble of biogeochemical models constrained with remote sensing surface inundation and inventory-based wetland area data. Between 2000–2012, boreal wetland CH4 emissions increased by 1.2 Tg yr−1 (−0.2–3.5 Tg yr−1), tropical emissions decreased by 0.9 Tg yr−1 (−3.2−1.1 Tg yr−1), yet globally, emissions remained unchanged at 184 ± 22 Tg yr−1. Changing air temperature was responsible for increasing high-latitude emissions whereas declines in low-latitude wetland area decreased tropical emissions; both dynamics are consistent with features of predicted centennial-scale climate change impacts on wetland CH4 emissions. Despite uncertainties in wetland area mapping, our study shows that global wetland CH4 emissions have not contributed significantly to the period of renewed atmospheric CH4 growth, and is consistent with findings from studies that indicate some combination of increasing fossil fuel and agriculture-related CH4 emissions, and a decrease in the atmospheric oxidative sink
    corecore