257 research outputs found

    Piecing it together: atrophy profiles of hippocampal subfields relate to cognitive impairment along the Alzheimer’s disease spectrum

    Get PDF
    IntroductionPeople with Alzheimer’s disease (AD) experience more rapid declines in their ability to form hippocampal-dependent memories than cognitively normal healthy adults. Degeneration of the whole hippocampal formation has previously been found to covary with declines in learning and memory, but the associations between subfield-specific hippocampal neurodegeneration and cognitive impairments are not well characterized in AD. To improve prognostic procedures, it is critical to establish in which hippocampal subfields atrophy relates to domain-specific cognitive declines among people along the AD spectrum. In this study, we examine high-resolution structural magnetic resonance imaging (MRI) of the medial temporal lobe and extensive neuropsychological data from 29 amyloid-positive people on the AD spectrum and 17 demographically-matched amyloid-negative healthy controls.MethodsParticipants completed a battery of neuropsychological exams including select tests of immediate recollection, delayed recollection, and general cognitive status (i.e., performance on the Mini-Mental State Examination [MMSE] and Montreal Cognitive Assessment [MoCA]). Hippocampal subfield volumes (CA1, CA2, CA3, dentate gyrus, and subiculum) were measured using a dedicated MRI slab sequence targeting the medial temporal lobe and used to compute distance metrics to quantify AD spectrum-specific atrophic patterns and their impact on cognitive outcomes.ResultsOur results replicate prior studies showing that CA1, dentate gyrus, and subiculum hippocampal subfield volumes were significantly reduced in AD spectrum participants compared to amyloid-negative controls, whereas CA2 and CA3 did not exhibit such patterns of atrophy. Moreover, degeneration of the subiculum along the AD spectrum was linked to a significant decline in general cognitive status measured by the MMSE, while degeneration scores of the CA1 and dentate gyrus were more widely associated with declines on the MMSE and tests of learning and memory.DiscussionThese findings provide evidence that subfield-specific patterns of hippocampal degeneration, in combination with cognitive assessments, may constitute a sensitive prognostic approach and could be used to better track disease trajectories among individuals on the AD spectrum

    Gender moderates the relationship between empathy and aggressiveness in sport: The mediating role of anger

    Get PDF
    This research investigated whether gender moderates, and anger mediates, the relationship between empathy (i.e., perspective taking and empathic concern) and aggressiveness in sport. In Study 1, perspective taking and empathic concern were negatively associated with aggressiveness, and this effect was stronger in women compared to men. In Study 2, perspective taking was a negative predictor of aggressiveness and antisocial behavior in sport, and anger mediated these relationships in women, but not in men. Our findings suggest that empathy and emotion-based strategies targeted at reducing aggressiveness in sport need to be tailored for males and females

    A Randomised Controlled Trial of a Facilitated Home-Based Rehabilitation Intervention in Patients with Heart Failure with Preserved Ejection Fraction and their Caregivers:The REACH-HFpEF Pilot Study

    Get PDF
    Abstract Introduction Home-based cardiac rehabilitation may overcome suboptimal rates of participation. The overarching aim of this study was to assess the feasibility and acceptability of the novel Rehabilitation EnAblement in CHronic Hear Failure (REACH-HF) rehabilitation intervention for patients with heart failure with preserved ejection fraction (HFpEF) and their caregivers. Methods and results Patients were randomised 1:1 to REACH-HF intervention plus usual care (intervention group) or usual care alone (control group). REACH-HF is a home-based comprehensive self-management rehabilitation programme that comprises patient and carer manuals with supplementary tools, delivered by trained healthcare facilitators over a 12 week period. Patient outcomes were collected by blinded assessors at baseline, 3 months and 6 months postrandomisation and included health-related quality of life (primary) and psychological well-being, exercise capacity, physical activity and HF-related hospitalisation (secondary). Outcomes were also collected in caregivers. We enrolled 50 symptomatic patients with HF from Tayside, Scotland with a left ventricular ejection fraction ≥45% (mean age 73.9 years, 54% female, 100% white British) and 21 caregivers. Study retention (90%) and intervention uptake (92%) were excellent. At 6 months, data from 45 patients showed a potential direction of effect in favour of the intervention group, including the primary outcome of Minnesota Living with Heart Failure Questionnaire total score (between-group mean difference −11.5, 95% CI −22.8 to 0.3). A total of 11 (4 intervention, 7 control) patients experienced a hospital admission over the 6 months of follow-up with 4 (control patients) of these admissions being HF-related. Improvements were seen in a number intervention caregivers' mental health and burden compared with control. Conclusions Our findings support the feasibility and rationale for delivering the REACH-HF facilitated home-based rehabilitation intervention for patients with HFpEF and their caregivers and progression to a full multicentre randomised clinical trial to test its clinical effectiveness and cost-effectiveness

    Hundreds of variants clustered in genomic loci and biological pathways affect human height

    Get PDF
    Most common human traits and diseases have a polygenic pattern of inheritance: DNA sequence variants at many genetic loci influence the phenotype. Genome-wide association (GWA) studies have identified more than 600 variants associated with human traits, but these typically explain small fractions of phenotypic variation, raising questions about the use of further studies. Here, using 183,727 individuals, we show that hundreds of genetic variants, in at least 180 loci, influence adult height, a highly heritable and classic polygenic trait. The large number of loci reveals patterns with important implications for genetic studies of common human diseases and traits. First, the 180 loci are not random, but instead are enriched for genes that are connected in biological pathways (P = 0.016) and that underlie skeletal growth defects (P < 0.001). Second, the likely causal gene is often located near the most strongly associated variant: in 13 of 21 loci containing a known skeletal growth gene, that gene was closest to the associated variant. Third, at least 19 loci have multiple independently associated variants, suggesting that allelic heterogeneity is a frequent feature of polygenic traits, that comprehensive explorations of already-discovered loci should discover additional variants and that an appreciable fraction of associated loci may have been identified. Fourth, associated variants are enriched for likely functional effects on genes, being over-represented among variants that alter amino-acid structure of proteins and expression levels of nearby genes. Our data explain approximately 10% of the phenotypic variation in height, and we estimate that unidentified common variants of similar effect sizes would increase this figure to approximately 16% of phenotypic variation (approximately 20% of heritable variation). Although additional approaches are needed to dissect the genetic architecture of polygenic human traits fully, our findings indicate that GWA studies can identify large numbers of loci that implicate biologically relevant genes and pathways.

    Genomic, Pathway Network, and Immunologic Features Distinguishing Squamous Carcinomas

    Get PDF
    This integrated, multiplatform PanCancer Atlas study co-mapped and identified distinguishing molecular features of squamous cell carcinomas (SCCs) from five sites associated with smokin

    The National Criticality Experiments Research Center and its role in support of advanced reactor design

    Get PDF
    The National Criticality Experiments Research Center (NCERC) located at the Nevada National Security Site (NNSS) in the Device Assembly Facility (DAF) and operated by Los Alamos National Laboratory (LANL) is the only general purpose critical experiments facility in the United States. Experiments from subcritical to critical and above prompt critical are carried out at NCERC on a regular basis. In recent years, NCERC has become more involved in experiments related to nuclear energy, including the Kilopower/KRUSTY demonstration and the recent Hypatia experiment. Multiple nuclear energy related projects are currently ongoing at NCERC. This paper discusses NCERC’s role in advanced reactor design and how that role may change in the future

    Pan-Cancer Analysis of lncRNA Regulation Supports Their Targeting of Cancer Genes in Each Tumor Context

    Get PDF
    Long noncoding RNAs (lncRNAs) are commonly dys-regulated in tumors, but only a handful are known toplay pathophysiological roles in cancer. We inferredlncRNAs that dysregulate cancer pathways, onco-genes, and tumor suppressors (cancer genes) bymodeling their effects on the activity of transcriptionfactors, RNA-binding proteins, and microRNAs in5,185 TCGA tumors and 1,019 ENCODE assays.Our predictions included hundreds of candidateonco- and tumor-suppressor lncRNAs (cancerlncRNAs) whose somatic alterations account for thedysregulation of dozens of cancer genes and path-ways in each of 14 tumor contexts. To demonstrateproof of concept, we showed that perturbations tar-geting OIP5-AS1 (an inferred tumor suppressor) andTUG1 and WT1-AS (inferred onco-lncRNAs) dysre-gulated cancer genes and altered proliferation ofbreast and gynecologic cancer cells. Our analysis in-dicates that, although most lncRNAs are dysregu-lated in a tumor-specific manner, some, includingOIP5-AS1, TUG1, NEAT1, MEG3, and TSIX, synergis-tically dysregulate cancer pathways in multiple tumorcontexts

    Pan-cancer Alterations of the MYC Oncogene and Its Proximal Network across the Cancer Genome Atlas

    Get PDF
    Although theMYConcogene has been implicated incancer, a systematic assessment of alterations ofMYC, related transcription factors, and co-regulatoryproteins, forming the proximal MYC network (PMN),across human cancers is lacking. Using computa-tional approaches, we define genomic and proteo-mic features associated with MYC and the PMNacross the 33 cancers of The Cancer Genome Atlas.Pan-cancer, 28% of all samples had at least one ofthe MYC paralogs amplified. In contrast, the MYCantagonists MGA and MNT were the most frequentlymutated or deleted members, proposing a roleas tumor suppressors.MYCalterations were mutu-ally exclusive withPIK3CA,PTEN,APC,orBRAFalterations, suggesting that MYC is a distinct onco-genic driver. Expression analysis revealed MYC-associated pathways in tumor subtypes, such asimmune response and growth factor signaling; chro-matin, translation, and DNA replication/repair wereconserved pan-cancer. This analysis reveals insightsinto MYC biology and is a reference for biomarkersand therapeutics for cancers with alterations ofMYC or the PMN

    Spatial Organization and Molecular Correlation of Tumor-Infiltrating Lymphocytes Using Deep Learning on Pathology Images

    Get PDF
    Beyond sample curation and basic pathologic characterization, the digitized H&E-stained images of TCGA samples remain underutilized. To highlight this resource, we present mappings of tumorinfiltrating lymphocytes (TILs) based on H&E images from 13 TCGA tumor types. These TIL maps are derived through computational staining using a convolutional neural network trained to classify patches of images. Affinity propagation revealed local spatial structure in TIL patterns and correlation with overall survival. TIL map structural patterns were grouped using standard histopathological parameters. These patterns are enriched in particular T cell subpopulations derived from molecular measures. TIL densities and spatial structure were differentially enriched among tumor types, immune subtypes, and tumor molecular subtypes, implying that spatial infiltrate state could reflect particular tumor cell aberration states. Obtaining spatial lymphocytic patterns linked to the rich genomic characterization of TCGA samples demonstrates one use for the TCGA image archives with insights into the tumor-immune microenvironment
    corecore