29 research outputs found

    Four new T dwarfs identified in PanSTARRS 1 commissioning data

    Full text link
    A complete well-defined sample of ultracool dwarfs is one of the key science programs of the Pan-STARRS 1 optical survey telescope (PS1). Here we combine PS1 commissioning data with 2MASS to conduct a proper motion search (0.1--2.0\arcsec/yr) for nearby T dwarfs, using optical+near-IR colors to select objects for spectroscopic followup. The addition of sensitive far-red optical imaging from PS1 enables discovery of nearby ultracool dwarfs that cannot be identified from 2MASS data alone. We have searched 3700 sq. deg. of PS1 y-band (0.95--1.03 um) data to y≈\approx19.5 mag (AB) and J≈\approx16.5 mag (Vega) and discovered four previously unknown bright T dwarfs. Three of the objects (with spectral types T1.5, T2 and T3.5) have photometric distances within 25 pc and were missed by previous 2MASS searches due to more restrictive color selection criteria. The fourth object (spectral type T4.5) is more distant than 25 pc and is only a single-band detection in 2MASS. We also examine the potential for completing the census of nearby ultracool objects with the PS1 3π\pi survey.Comment: 25 pages, 8 figures, 5 table, AJ accepted, updated to comply with Pan-STARRS1 naming conventio

    Weather on the Nearest Brown Dwarfs: Resolved Simultaneous Multi-Wavelength Variability Monitoring of WISE J104915.57-531906.1AB

    Full text link
    We present two epochs of MPG/ESO 2.2m GROND simultaneous 6-band (r′i′z′JHKr'i'z'JHK) photometric monitoring of the closest known L/T transition brown dwarf binary WISE J104915.57-531906.1AB. We report here the first resolved variability monitoring of both the T0.5 and L7.5 components. We obtained 4 hours of focused observations on the night of UT 2013-04-22, as well as 4 hours of defocused (unresolved) observations on the night of UT 2013-04-16. We note a number of robust trends in our light curves. The r′r' and i′i' light curves appear to be anticorrelated with z′z' and HH for the T0.5 component and in the unresolved lightcurve. In the defocused dataset, JJ appears correlated with z′z' and HH and anticorrelated with r′r' and i′i', while in the focused dataset we measure no variability for JJ at the level of our photometric precision, likely due to evolving weather phenomena. In our focused T0.5 component lightcurve, the KK band lightcurve displays a significant phase offset relative to both HH and z′z'. We argue that the measured phase offsets are correlated with atmospheric pressure probed at each band, as estimated from 1D atmospheric models. We also report low-amplitude variability in i′i' and z′z' intrinsic to the L7.5 component.Comment: 14 pages, 5 figures, accepted to ApJ Letter

    Prospecting in ultracool dwarfs : Measuring the metallicities of mid- and late-m dwarfs

    Get PDF
    © 2014. The American Astronomical Society. All rights reserved.Metallicity is a fundamental parameter that contributes to the physical characteristics of a star. The low temperatures and complex molecules present in M dwarf atmospheres make it difficult to measure their metallicities using techniques that have been commonly used for Sun-like stars. Although there has been significant progress in developing empirical methods to measure M dwarf metallicities over the last few years, these techniques have been developed primarily for early- to mid-M dwarfs. We present a method to measure the metallicity of mid- to late-M dwarfs from moderate resolution (R ∼ 2000) K-band (≃ 2.2 μm) spectra. We calibrate our formula using 44 wide binaries containing an F, G, K, or early-M primary of known metallicity and a mid- to late-M dwarf companion. We show that similar features and techniques used for early-M dwarfs are still effective for late-M dwarfs. Our revised calibration is accurate to ∼0.07 dex for M4.5-M9.5 dwarfs with -0.58 <[Fe/H] <+0.56 and shows no systematic trends with spectral type, metallicity, or the method used to determine the primary star metallicity. We show that our method gives consistent metallicities for the components of M+M wide binaries. We verify that our new formula works for unresolved binaries by combining spectra of single stars. Lastly, we show that our calibration gives consistent metallicities with the Mann et al. study for overlapping (M4-M5) stars, establishing that the two calibrations can be used in combination to determine metallicities across the entire M dwarf sequence.Peer reviewe

    HIP 38939B: A New Benchmark T Dwarf in the Galactic Plane Discovered with Pan-STARRS1

    Full text link
    We report the discovery of a wide brown dwarf companion to the mildly metal-poor ([Fe/H]=-0.24), low galactic latitude (b = 1.88 deg) K4V star HIP 38939. The companion was discovered by its common proper motion with the primary and its red optical (Pan-STARRS1) and blue infrared (2MASS) colors. It has a projected separation of 1630 AU and a near-infrared spectral type of T4.5. As such it is one of only three known companions to a main sequence star which have early/mid-T spectral types (the others being HN Peg B and eps Indi B). Using chromospheric activity we estimate an age for the primary of 900{+1900,-600} Myr. This value is also in agreement with the age derived from the star's weak ROSAT detection. Comparison with evolutionary models for this age range indicates that HIP 38939B falls in the mass range 38+/-20 Mjup with an effective temperature range of 1090+/-60 K. Fitting our spectrum with atmospheric models gives a best fitting temperature of 1100 K. We include our object in an analysis of the population of benchmark T dwarfs and find that while older atmospheric models appeared to over-predict the temperature of the coolest objects compared to evolutionary models, more recent atmospheric models provide better agreement.Comment: ApJ, in press. Tiny changes incorporated into final version: added analysis of likelihood of companionship, clarified the fitting proceedure, and updated the benchmark analysis to highlight when the quoted evolutionary models use the atmospheric model they are being compared to as a boundary conditio
    corecore