11 research outputs found

    Cardiac and placental mitochondrial characterization in a rabbit model of intrauterine growth restriction

    Get PDF
    BACKGROUND: Intrauterine growth restriction (IUGR) is associated with cardiovascular remodeling persisting into adulthood. Mitochondrial bioenergetics, essential for embryonic development and cardiovascular function, are regulated by nuclear effectors as sirtuins. A rabbit model of IUGR and cardiovascular remodeling was generated, in which heart mitochondrial alterations were observed by microscopic and transcriptomic analysis. We aimed to evaluate if such alterations are translated at a functional mitochondrial level to establish the etiopathology and potential therapeutic targets for this obstetric complication. METHODS: Hearts and placentas from 16 IUGR-offspring and 14 controls were included to characterize mitochondrial function. RESULTS: Enzymatic activities of complexes II, IV and II + III in IUGR-hearts (-11.96 ± 3.16%; -15.58 ± 5.32%; -14.73 ± 4.37%; p < 0.05) and II and II + III in IUGR-placentas (-17.22 ± 3.46%; p < 0.005 and -29.64 ± 4.43%; p < 0.001) significantly decreased. This was accompanied by a not significant reduction in CI-stimulated oxygen consumption and significantly decreased complex II SDHB subunit expression in placenta (-44.12 ± 5.88%; p < 0.001). Levels of mitochondrial content, Coenzyme Q and cellular ATP were conserved. Lipid peroxidation significantly decreased in IUGR-hearts (-39.02 ± 4.35%; p < 0.001), but not significantly increased in IUGR-placentas. Sirtuin3 protein expression significantly increased in IUGR-hearts (84.21 ± 31.58%; p < 0.05) despite conserved anti-oxidant SOD2 protein expression and activity in both tissues. CONCLUSIONS: IUGR is associated with cardiac and placental mitochondrial CII dysfunction. Up-regulated expression of Sirtuin3 may explain attenuation of cardiac oxidative damage and preserved ATP levels under CII deficiency. GENERAL SIGNIFICANCE: These findings may allow the design of dietary interventions to modulate Sirtuin3 expression and consequent regulation of mitochondrial imbalance associated with IUGR and derived cardiovascular remodeling

    Prolonged Sitting Time: Barriers, Facilitators and Views on Change among Primary Healthcare Patients Who Are Overweight or Moderately Obese

    Get PDF
    Background and Objectives Prolonged sitting time has negative consequences on health, although the population is not well aware of these harmful effects. We explored opinions expressed by primary care patients diagnosed as overweight or moderately obese concerning their time spent sitting, willingness to change, and barriers, facilitators, goals and expectations related to limiting this behaviour. Methods A descriptive-interpretive qualitative study was carried out at three healthcare centres in Barcelona, Spain, and included 23 patients with overweight or moderate obesity, aged 25 to 65 years, who reported sitting for at least 6 hours a day. Exclusion criteria were inability to sit down or stand up from a chair without help and language barriers that precluded interview participation. Ten in-depth, semi-structured interviews (5 group, 5 individual) were audio recorded from January to July 2012 and transcribed. The interview script included questions about time spent sitting, willingness to change, barriers and facilitators, and the prospect of assistance from primary healthcare professionals. An analysis of thematic content was made using ATLAS.Ti and triangulation of analysts. Results The most frequent sedentary activities were computer use, watching television, and motorized journeys. There was a lack of awareness of the amount of time spent sitting and its negative consequences on health. Barriers to reducing sedentary time included work and family routines, lack of time and willpower, age and sociocultural limitations. Facilitators identified were sociocultural change, free time and active work, and family surroundings. Participants recognized the abilities of health professionals to provide help and advice, and reported a preference for patient-centred or group interventions. Conclusions Findings from this study have implications for reducing sedentary behaviour. Patient insights were used to design an intervention to reduce sitting time within the frame of the SEDESTACTIV clinical trial

    Cardiac and placental mitochondrial characterization in a rabbit model of intrauterine growth restriction

    No full text
    [Background]: Intrauterine growth restriction (IUGR) is associated with cardiovascular remodeling persisting into adulthood. Mitochondrial bioenergetics, essential for embryonic development and cardiovascular function, are regulated by nuclear effectors as sirtuins. A rabbit model of IUGR and cardiovascular remodeling was generated, in which heart mitochondrial alterations were observed by microscopic and transcriptomic analysis. We aimed to evaluate if such alterations are translated at a functional mitochondrial level to establish the etiopathology and potential therapeutic targets for this obstetric complication. [Methods]: Hearts and placentas from 16 IUGR-offspring and 14 controls were included to characterize mitochondrial function. [Results]: Enzymatic activities of complexes II, IV and II + III in IUGR-hearts (−11.96 ± 3.16%; −15.58 ± 5.32%; −14.73 ± 4.37%; p < 0.05) and II and II + III in IUGR-placentas (−17.22 ± 3.46%; p < 0.005 and −29.64 ± 4.43%; p < 0.001) significantly decreased. This was accompanied by a not significant reduction in CI-stimulated oxygen consumption and significantly decreased complex II SDHB subunit expression in placenta (−44.12 ± 5.88%; p < 0.001). Levels of mitochondrial content, Coenzyme Q and cellular ATP were conserved. Lipid peroxidation significantly decreased in IUGR-hearts (−39.02 ± 4.35%; p < 0.001), but not significantly increased in IUGR-placentas. Sirtuin3 protein expression significantly increased in IUGR-hearts (84.21 ± 31.58%; p < 0.05) despite conserved anti-oxidant SOD2 protein expression and activity in both tissues. [Conclusions]: IUGR is associated with cardiac and placental mitochondrial CII dysfunction. Up-regulated expression of Sirtuin3 may explain attenuation of cardiac oxidative damage and preserved ATP levels under CII deficiency.This work was supported by Fondo de Investigación Sanitaria [FIS PI12/01199, PI15/00817, PI15/00903 and PI15/00130], CIBERER (an initiative of ISCIII) and InterCIBER [PIE1400061] granted by Instituto de Salud Carlos III and cofinanced by the Fondo Europeo de Desarrollo Regional de la Unión Europea “Una manera de hacer Europa”; Suports a Grups de Recerca [SGR893/2017] and CERCA Programme from the Generalitat de Catalunya; CONACyT; Fundació La Marató de TV3 [87/C/2015]; Fundació Cellex; and “la Caixa” Foundation

    Cardiac and placental mitochondrial characterization in a rabbit model of intrauterine growth restriction

    No full text
    BACKGROUND: Intrauterine growth restriction (IUGR) is associated with cardiovascular remodeling persisting into adulthood. Mitochondrial bioenergetics, essential for embryonic development and cardiovascular function, are regulated by nuclear effectors as sirtuins. A rabbit model of IUGR and cardiovascular remodeling was generated, in which heart mitochondrial alterations were observed by microscopic and transcriptomic analysis. We aimed to evaluate if such alterations are translated at a functional mitochondrial level to establish the etiopathology and potential therapeutic targets for this obstetric complication. METHODS: Hearts and placentas from 16 IUGR-offspring and 14 controls were included to characterize mitochondrial function. RESULTS: Enzymatic activities of complexes II, IV and II + III in IUGR-hearts (-11.96 ± 3.16%; -15.58 ± 5.32%; -14.73 ± 4.37%; p < 0.05) and II and II + III in IUGR-placentas (-17.22 ± 3.46%; p < 0.005 and -29.64 ± 4.43%; p < 0.001) significantly decreased. This was accompanied by a not significant reduction in CI-stimulated oxygen consumption and significantly decreased complex II SDHB subunit expression in placenta (-44.12 ± 5.88%; p < 0.001). Levels of mitochondrial content, Coenzyme Q and cellular ATP were conserved. Lipid peroxidation significantly decreased in IUGR-hearts (-39.02 ± 4.35%; p < 0.001), but not significantly increased in IUGR-placentas. Sirtuin3 protein expression significantly increased in IUGR-hearts (84.21 ± 31.58%; p < 0.05) despite conserved anti-oxidant SOD2 protein expression and activity in both tissues. CONCLUSIONS: IUGR is associated with cardiac and placental mitochondrial CII dysfunction. Up-regulated expression of Sirtuin3 may explain attenuation of cardiac oxidative damage and preserved ATP levels under CII deficiency. GENERAL SIGNIFICANCE: These findings may allow the design of dietary interventions to modulate Sirtuin3 expression and consequent regulation of mitochondrial imbalance associated with IUGR and derived cardiovascular remodeling

    Cardiac and placental mitochondrial characterization in a rabbit model of intrauterine growth restriction

    No full text
    BACKGROUND: Intrauterine growth restriction (IUGR) is associated with cardiovascular remodeling persisting into adulthood. Mitochondrial bioenergetics, essential for embryonic development and cardiovascular function, are regulated by nuclear effectors as sirtuins. A rabbit model of IUGR and cardiovascular remodeling was generated, in which heart mitochondrial alterations were observed by microscopic and transcriptomic analysis. We aimed to evaluate if such alterations are translated at a functional mitochondrial level to establish the etiopathology and potential therapeutic targets for this obstetric complication. METHODS: Hearts and placentas from 16 IUGR-offspring and 14 controls were included to characterize mitochondrial function. RESULTS: Enzymatic activities of complexes II, IV and II + III in IUGR-hearts (-11.96 ± 3.16%; -15.58 ± 5.32%; -14.73 ± 4.37%; p < 0.05) and II and II + III in IUGR-placentas (-17.22 ± 3.46%; p < 0.005 and -29.64 ± 4.43%; p < 0.001) significantly decreased. This was accompanied by a not significant reduction in CI-stimulated oxygen consumption and significantly decreased complex II SDHB subunit expression in placenta (-44.12 ± 5.88%; p < 0.001). Levels of mitochondrial content, Coenzyme Q and cellular ATP were conserved. Lipid peroxidation significantly decreased in IUGR-hearts (-39.02 ± 4.35%; p < 0.001), but not significantly increased in IUGR-placentas. Sirtuin3 protein expression significantly increased in IUGR-hearts (84.21 ± 31.58%; p < 0.05) despite conserved anti-oxidant SOD2 protein expression and activity in both tissues. CONCLUSIONS: IUGR is associated with cardiac and placental mitochondrial CII dysfunction. Up-regulated expression of Sirtuin3 may explain attenuation of cardiac oxidative damage and preserved ATP levels under CII deficiency. GENERAL SIGNIFICANCE: These findings may allow the design of dietary interventions to modulate Sirtuin3 expression and consequent regulation of mitochondrial imbalance associated with IUGR and derived cardiovascular remodeling
    corecore