12 research outputs found

    Hepatitis B Virus Surface Antigen Assembly Function Persists when Entire Transmembrane Domains 1 and 3 Are Replaced by a Heterologous Transmembrane Sequence â–¿

    No full text
    Native hepatitis B surface antigen (HBsAg) spontaneously assembles into 22-nm subviral particles. The particles are lipoprotein micelles, in which HBsAg is believed to span the lipid layer four times. The first two transmembrane domains, TM1 and TM2, are required for particle assembly. We have probed the requirements for particle assembly by replacing the entire first or third TM domain of HBsAg with the transmembrane domain of HIV gp41. We found that either TM domain of HBsAg could be replaced, resulting in HBsAg-gp41 chimeras that formed particles efficiently. HBsAg formed particles even when both TM1 and TM3 were replaced with the gp41 domain. The results indicate remarkable flexibility in HBsAg particle formation and provide a novel way to express heterologous membrane proteins that are anchored to a lipid surface by their own membrane-spanning domain. The membrane-proximal exposed region (MPER) of gp41 is an important target of broadly reactive neutralizing antibodies against HIV-1, and HBsAg-MPER particles may provide a good platform for future vaccine development

    Deriving vegetation drag coefficients in combined wave-current flows by calibration and direct measurement methods

    No full text
    Coastal vegetation is efficient in damping incident waves even in storm events, thus providing valuable protections to coastal communities. However, large uncertainties lie in determining vegetation drag coefficients (CD), which are directly related to the wave damping capacity of a certain vegetated area. One major uncertainty is related to the different methods used in deriving CD. Currently, two methods are available, i.e. the conventional calibration approach and the new direct measurement approach. Comparative studies of these two methods are lacking to reveal their respective strengths and reduce the uncertainty. Additional uncertainty stems from the dependence of CD on flow conditions (i.e. wave-only or wave-current) and indicative parameters, i.e. Reynolds number (Re) and Keulegan-Carpenter number (KC). Recent studies have obtained CD-Re relations for combined wave-current flows, whereas CD-KC relations in such flow condition remain unexplored. Thus, this study conducts a thorough comparison between two existing methods and explores the CD-KC relations in combined wave-current flows. By a unique revisiting procedure, we show that CD derived by the direct measurement approach have a better overall performance in reproducing both acting force and the resulting wave dissipation. Therefore, a generic CD-KC relation for both wave-only and wave-current flows is proposed using direct measurement approach. Finally, a detailed comparison of these two approaches are given. The comprehensive method comparison and the obtained new CD-KC relation may lead to improved understanding and modelling of wave-vegetation interaction.Green Open Access added to TU Delft Institutional Repository ‘You share, we take care!’ – Taverne project https://www.openaccess.nl/en/you-share-we-take-care Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.Environmental Fluid Mechanic
    corecore