148 research outputs found

    Infall Signatures in a Prestellar Core embedded in the High-Mass 70 μ\mum Dark IRDC G331.372-00.116

    Get PDF
    Using Galactic Plane surveys, we have selected a massive (1200 M⊙_\odot), cold (14 K) 3.6-70 μ\mum dark IRDC G331.372-00.116. This IRDC has the potential to form high-mass stars and, given the absence of current star formation signatures, it seems to represent the earliest stages of high-mass star formation. We have mapped the whole IRDC with the Atacama Large Millimeter/submillimeter Array (ALMA) at 1.1 and 1.3 mm in dust continuum and line emission. The dust continuum reveals 22 cores distributed across the IRDC. In this work, we analyze the physical properties of the most massive core, ALMA1, which has no molecular outflows detected in the CO (2-1), SiO (5-4), and H2_2CO (3-2) lines. This core is relatively massive (MM = 17.6 M⊙_\odot), subvirialized (virial parameter αvir=Mvir/M=0.14\alpha_{vir}=M_{vir}/M=0.14), and is barely affected by turbulence (transonic Mach number of 1.2). Using the HCO+^+ (3-2) line, we find the first detection of infall signatures in a relatively massive, prestellar core (ALMA1) with the potential to form a high-mass star. We estimate an infall speed of 1.54 km s−1^{-1} and a high accretion rate of 1.96 ×\times 10−3^{-3} M⊙_\odot yr−1^{-1}. ALMA1 is rapidly collapsing, out of virial equilibrium, more consistent with competitive accretion scenarios rather than the turbulent core accretion model. On the other hand, ALMA1 has a mass ∼\sim6 times larger than the clumps Jeans mass, being in an intermediate mass regime (MJ=2.7<M≲M_{J}=2.7<M\lesssim 30 M⊙_\odot), contrary to what both the competitive accretion and turbulent core accretion theories predict.Comment: 13 Pages, 5 Figures, 3 Table

    Molybdenum Disulfide-Coated Lithium Vanadium Fluorophosphate Anode: Experiments and First-Principles Calculations

    Get PDF
    To develop a new anode material to meet the increasing demands of lithium-ion battery, MoS2 is used for the first time to modify the C/LiVPO4F anode to improve its lithium-storage performance between 3 and 0.01 V. Morphological observations reveal that the MoS2-modified C/LiVPO4F particles (M-LVPF) are wrapped by an amorphous carbon as interlayer and layered MoS2 as external surface. Charge–discharge tests show that M-LVPF delivers a high reversible capacity of 308 mAh g−1 at 50 mA g−1. After 300 cycles at 1.0 A g−1, a capacity retention of 98.7 % is observed. Moreover, it exhibits high rate capability with a specific capacity of 199 mAh g−1 at 1.6 A g−1. Electrochemical impedance spectroscopy tests indicate that the lithium-ion diffusion and charge-exchange reaction at the surface of M-LVPF are greatly enhanced. First-principles calculations for the MoS2 (001)/C/LiVPO4F (010) system demonstrate that the absorption of MoS2 on C/LiVPO4F is exothermic and spontaneous and that the electron transfer at the MoS2-absorbed C/LiVPO4F surface is enhanced.postprin

    Tunable domino effect of thermomagnetic instabilities in superconducting films with multiply-connected topological structures

    Full text link
    peer reviewedAbstract Topology is a crucial ingredient for understanding the physical properties of superconductors. Magnetic field crowds to adopt the form of topologically-protected quantum flux lines which can lose this property when moving at high velocities. These extreme conditions can be realized when superconductors undergo a thermomagnetic instability for which the sample topology come also into play. In this work, utilizing the magneto-optical imaging technique, we experimentally study magnetic flux avalanches in superconducting films with multiply-connected geometries, including single and double rings. We observe a domino effect in which avalanches triggered at the outer ring, stimulate avalanches at the inner ring thus impairing the expected magnetic shielding resulting from the outer ring and gap. We implement numerical simulations in order to gain more insight into the underlying physical mechanism and demonstrate that such event is not caused by the heat conduction, but mainly attributed to the local current distribution variation near the preceding flux avalanche in the outer ring, which in turn has a ripple effect on the local magnetic field profile in the gap. Furthermore, we find that the domino effect of thermomagnetic instabilities can be switched on/off by the environmental temperature and the gap width between the concentric rings. These findings provide new insights on the thermomagnetic instability in superconducting devices with complex topological structures, such as the superconductor–insulator–superconductor multilayer structures of superconducting radio-frequency cavities

    The ALMA Survey of 70 μm Dark High-mass Clumps in Early Stages (ASHES). I. Pilot Survey: Clump Fragmentation

    Get PDF
    \ua9 2019. The American Astronomical Society. All rights reserved. The ALMA Survey of 70 μm dark High-mass clumps in Early Stages (ASHES) is designed to systematically characterize the earliest stages and constrain theories of high-mass star formation. Twelve massive (>500 M⊙ ), cold (≤15 K), 3.6-70 μm dark prestellar clump candidates, embedded in infrared dark clouds, were carefully selected in the pilot survey to be observed with the Atacama Large Millimeter/submillimeter Array (ALMA). We have mosaicked each clump (∼1 arcmin2) in continuum and line emission with the 12 m, 7 m, and Total Power (TP) arrays at 224 GHz (1.34 mm), resulting in ∼1.″2 resolution (∼4800 au, at the average source distance). As the first paper in the series, we concentrate on the continuum emission to reveal clump fragmentation. We detect 294 cores, from which 84 (29%) are categorized as protostellar based on outflow activity or "warm core" line emission. The remaining 210 (71%) are considered prestellar core candidates. The number of detected cores is independent of the mass sensitivity range of the observations and, on average, more massive clumps tend to form more cores. We find a large population of low-mass (30 M⊙) prestellar cores (maximum mass 11 M⊙). From the prestellar core mass function, we derive a power-law index of 1.17 \ub1 0.10, which is slightly shallower than Salpeter. We used the minimum spanning tree (MST) technique to characterize the separation between cores and their spatial distribution, and to derive mass segregation ratios. While there is a range of core masses and separations detected in the sample, the mean separation and mass per clump are well explained by thermal Jeans fragmentation and are inconsistent with turbulent Jeans fragmentation. Core spatial distribution is well described by hierarchical subclustering rather than centrally peaked clustering. There is no conclusive evidence of mass segregation. We test several theoretical conditions and conclude that overall, competitive accretion and global hierarchical collapse scenarios are favored over the turbulent core accretion scenario

    Novel biomaterials: plasma-enabled nanostructures and functions

    Get PDF
    Material processing techniques utilizing low-temperature plasmas as the main process tool feature many unique capabilities for the fabrication of various nanostructured materials. As compared with the neutral-gas based techniques and methods, the plasma-based approaches offer higher levels of energy and flux controllability, often leading to higher quality of the fabricated nanomaterials and sometimes to the synthesis of the hierarchical materials with interesting properties. Among others, nanoscale biomaterials attract significant attention due to their special properties towards the biological materials (proteins, enzymes), living cells and tissues. This review briefly examines various approaches based on the use of low-temperature plasma environments to fabricate nanoscale biomaterials exhibiting high biological activity, biological inertness for drug delivery system, and other features of the biomaterials make them highly attractive. In particular, we briefly discuss the plasma-assisted fabrication of gold and silicon nanoparticles for bio-applications; carbon nanoparticles for bioimaging and cancer therapy; carbon nanotube-based platforms for enzyme production and bacteria growth control, and other applications of low-temperature plasmas in the production of biologically-active materials

    ALMA ACA and Nobeyama Observations of Two Orion Cores in Deuterated Molecular Lines

    Get PDF
    We mapped two molecular cloud cores in the Orion A cloud with the 7 m Array of the Atacama Compact Array (ACA) of the Atacama Large Millimeter/submillimeterArray (ALMA) and with the Nobeyama 45 m radio telescope. These cores have bright N2D+ emission in single-pointing observations with the Nobeyama 45 m radio telescope, have a relatively high deuterium fraction, and are thought to be close to the onset of star formation. One is a star-forming core, and the other is starless. These cores are located along filaments observed in N2H+ and show narrow line widths of 0.41 km s(-1) and 0.45 km s(-1) in N2D+, respectively, with the Nobeyama 45 m telescope. Both cores were detected with the ALMA ACA 7 m Array in the continuum and molecular lines at Band 6. The starless core G211 shows a clumpy structure with several sub-cores, which in turn show chemical differences. Also, the sub-cores in G211 have internal motions that are almost purely thermal. The starless sub-core G211D, in particular, shows a hint of the inverse P Cygni profile, suggesting infall motion. The star-forming core G210 shows an interesting spatial feature of two N2D+ peaks of similar intensity and radial velocity located symmetrically with respect to the single dust continuum peak. One interpretation is that the two N2D+ peaks represent an edge-on pseudo-disk. The CO outflow lobes, however, are not directed perpendicular to the line connecting both N2D+ peaks.Peer reviewe

    Astrochemical Properties of Planck Cold Clumps

    Get PDF
    We observed 13 Planck cold clumps with the James Clerk Maxwell Telescope/SCUBA-2 and with the Nobeyama 45 m radio telescope. The N2H+ distribution obtained with the Nobeyama telescope is quite similar to SCUBA-2 dust distribution. The 82 GHz HC3N, 82 GHz CCS, and 94 GHz CCS emission are often distributed differently with respect to the N2H+ emission. The CCS emission, which is known to be abundant in starless molecular cloud cores, is often very clumpy in the observed targets. We made deep single-pointing observations in DNC, (HNC)-C-13, N2D+, and cyclic-C3H2 toward nine clumps. The detection rate of N2D+ is 50%. Furthermore, we observed the NH3 emission toward 15 Planck cold clumps to estimate the kinetic temperature, and confirmed that most targets are cold (less than or similar to 20 K). In two of the starless clumps we observed, the CCS emission is distributed as it surrounds the N2H+ core (chemically evolved gas), which resembles the case of L1544, a prestellar core showing collapse. In addition, we detected both DNC and N2D+. These two clumps are most likely on the verge of star formation. We introduce the chemical evolution factor (CEF) for starless cores to describe the chemical evolutionary stage, and analyze the observed Planck cold clumps.Peer reviewe

    Molecular Cloud Cores with a High Deuterium Fraction : Nobeyama Single-pointing Survey

    Get PDF
    We present the results of a single-pointing survey of 207 dense cores embedded in Planck Galactic Cold Clumps distributed in five different environments (lambda Orionis, Orion A, Orion B, the Galactic plane, and high latitudes) to identify dense cores on the verge of star formation for the study of the initial conditions of star formation. We observed these cores in eight molecular lines at 76-94 GHz using the Nobeyama 45 m telescope. We find that early-type molecules (e.g., CCS) have low detection rates and that late-type molecules (e.g., N(2)H(+)and c-C3H2) and deuterated molecules (e.g., N(2)D(+)and DNC) have high detection rates, suggesting that most of the cores are chemically evolved. The deuterium fraction (D/H) is found to decrease with increasing distance, indicating that it suffers from differential beam dilution between the D/H pair of lines for distant cores (>1 kpc). For lambda Orionis, Orion A, and Orion B located at similar distances, D/H is not significantly different, suggesting that there is no systematic difference in the observed chemical properties among these three regions. We identify at least eight high-D/H cores in the Orion region and two at high latitudes, which are most likely to be close to the onset of star formation. There is no clear evidence of the evolutionary change in turbulence during the starless phase, suggesting that the dissipation of turbulence is not a major mechanism for the beginning of star formation as judged from observations with a beam size of 0.04 pc.Peer reviewe
    • …
    corecore