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Abstract
Material processing techniques utilizing low-temperature plasmas as the main process tool 
feature many unique capabilities for the fabrication of various nanostructured materials. As 
compared with the neutral-gas based techniques and methods, the plasma-based approaches 
offer higher levels of energy and flux controllability, often leading to higher quality of the 
fabricated nanomaterials and sometimes to the synthesis of the hierarchical materials with 
interesting properties. Among others, nanoscale biomaterials attract significant attention due to 
their special properties towards the biological materials (proteins, enzymes), living cells and 
tissues. This review briefly examines various approaches based on the use of low-temperature 
plasma environments to fabricate nanoscale biomaterials exhibiting high biological activity, 
biological inertness for drug delivery system, and other features of the biomaterials make them 
highly attractive. In particular, we briefly discuss the plasma-assisted fabrication of gold and 
silicon nanoparticles for bio-applications; carbon nanoparticles for bioimaging and cancer 
therapy; carbon nanotube-based platforms for enzyme production and bacteria growth control, 
and other applications of low-temperature plasmas in the production of biologically-active 
materials.

Keywords: nanoscale biomaterials, low-temperature plasma, nanoparticles, carbon nanotubes, 
proteins
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1.  Introduction

Biomaterials are novel materials featuring high biological 
activity, high biocompatibility, inertness or other properties 
that make them attractive for various biology, biotechnology 
and medicine-related applications, such as drug delivery 
devices [1, 2], production of enzymatic biocatalysts [3, 4], 
designing bioreactors [5, 6], biosensors [7, 8], biofilms [9, 10], 
nanostructured platforms for the advanced bioreactors [11], 
next-generation nanobiointerfaces [12, 13], biocompatible 
materials and systems [14, 15], antibacterial materials [16, 17] 
and many others. Plasma-based techniques are promising for 
biomaterial production due to higher levels of particle energy 
and material controllability, as compared with the traditional 
neutral-gas based production methods [18, 19]. Unique prop-
erties of the low-temperature plasma environment ensure syn-
thesis of the biomaterials with interesting properties [20, 21].

Here we briefly review the methods and biomaterials 
which can be fabricated using low-temperature plasmas, 
making the main stress to the unique capabilities of plasma-
based tools and processes resulting in the synthesis of 
biomaterials and bioplatforms. Metal and carbon nanopar-
ticles, complex carbon nanotube-based platforms, surface-
engineered silicon nanocrystals, hierarchical plasma-treated 
gold-silver structures for protein retention will be among 
others considered. Besides, plasma functionalization and 
direct influence of the plasma fluxes onto living cells and 
biofilms will be discussed, in view to better understand the 
unique capabilities of the plasma-based techniques for bio-
material fabrication.

2.  Plasma—a tool for building and control

In this section we will examine several kinds of nanostructures 
and nanostructured materials created with the use of methods 
and techniques based on low-temperature plasmas. Both tech-
nological aspects and material properties are considered.

2.1.  Surface-grown arrays of gold and silicon nanoparticles 
for bio-applications: plasma drives self-organization

Gold nanoparticles are the recently synthesized nanomaterials 
demonstrating significant potential for cancer therapy [22, 23], 
biosensing [24], biocatalysis [25]. The arrays of gold nanopar-
ticles grown on surfaces may be used for bio-detection [26], 
biosensing [27], bioelectronics [28] and many others appli-
cations, including catalytic systems for the nucleation and 
growth of carbon nanotubes [29]. Gold nanorods are also of 
interest which could be used, e.g. as contrast agents for multi-
modal imaging [30]. Structural and morphological properties 
of such arrays, including ordering are of particular importance 
[31, 32]. Several dedicated experiments have proven that the 
plasma-based techniques lead to results superior to those 
obtained by traditional chemical vapour deposition (CVD) 
methods.

How can low-temperature plasma help to produce high-
quality nanoparticles? The inductively-coupled plasma (ICP) 
technique was successfully used to produce high-quality 

arrays of gold nanoparticles on silicon surfaces, and to 
enhance the array ordering. Multiple deposition-annealing 
process was used to form patterns of gold nanoparticles with 
different morphology and density. The process was con-
trolled by varying the deposition time and the post-processing 
temperature. The morphology of the deposit was controlled 
by initiating nanoparticle nucleation and growth between the 
already existing nanostructures. Hence, control over the pat-
tern structure was ensured due to plasma-specific effects.

The pattern of gold nanoparticles was formed on silica (sil-
icon oxide) surface in a direct current magnetron discharge. 
Argon was used as a process gas at a pressure of 1 Pa. The 
processed surface was biased with direct current potential 
of  −50 V. The experimental setup is illustrated in figure 1(a). 
Vacuum pump and gas supply system were used to maintain 
the pressure during the deposition and treatment. A photo of 
the DC magnetron discharge is presented in figure 1(b). The 
nanoparticle patterns were formed on a narrow specimen of 
about 1 mm long and 0.2 mm wide, made of a silicon substrate 
covered with a silica layer. Firstly, the samples were cleaned in 
acetone solution using ultrasonication, then the cleaning was 
repeated in ethanol and wafers were dried by nitrogen. After 
that, the samples were processed by the plasma in a chamber 
as described above. Four different samples were fabricated to 
study the effect of the plasma parameters onto the structure 
and morphology of the nanoparticle pattern.

The samples were fabricated using a different number of 
deposition/annealing cycles. Specifically, 12 nm gold layer was 
formed on the first sample by a single deposition/annealing rep-
etition at 70 °C for 5 min. The next sample was fabricated by the 
doubled cycle resulted in 18 nm layer, and the rest samples had 
21 and 22 nm, respectively. This method resulted in different 

Figure 1.  (a) Schematic of the experimental setup for depositing 
nanoparticle gold films suitable for the use as e.g. biosensors. (b) 
Photo of the magnetron discharge. (c) Scheme of the sample design 
and electrical measurements. (d) Optical microscopy image of the 
sample fabricated by the multiple deposition-annealing process. 
Reprinted with permission from [33]. Copyright 2011 AIP Publishing.

J. Phys. D: Appl. Phys. 49 (2016) 273001



Topical Review

3

nanoparticle morphologies for different samples, thus revealing 
the potential of plasma for the structure control. Electrical char-
acteristics of the sample were measured to check the possibility 
of fabricating sensor. The details of the design and electrical 
measurements are shown in figure 1(c). The optical photo of the 
fabricated sensor is shown in figure 1(d). More details on the 
process and results can be found elsewhere [33].

Plasmas ignited in the N2+Ar gas mixture were used to  
produce patterns of silicon nanoparticles on silicon wafer  
[34, 35]. The scanning electron microscopy image of a typical 
silicon nanoparticle pattern formed by processing of a silicon 
surface in plasma at a surface temperature of 700 °C is shown 
in figure 2(a). The nanoparticles are distributed uniformly about 
the surface, and the surface density of the nanoparticles is low.

One specific feature of the plasma is a large amount of con-
trol parameters influencing the deposition process, and this 
makes the experiments time-consuming. To study in detail the 
potential of plasma-based methods for the formation of uniform 
nanoparticle patterns, simulations were used. Figures 2(b) and 
(c) present the 3D visualizations of the adsorbed atom (adatom) 
density field and the structure of the electric field, calculated 
using the diffusion-based model [36]. The image presents that 
the pattern of adatom density is quite irregular, and there are 
areas with a relatively high density of adatoms where new 
nanostructures may nucleate. The structure of the calculated 
electric field is illustrated in figure 2(c). The nucleation of new 
nanoparticles is highly probable in such non-uniform patterns, 
and specifically where the adatom density is high enough to 
ensure high collision density on the surface. Further treatment 
elevates the level of uniformity of nanoparticle patterns in such 
systems. Figure 2(d) presents several screenshots illustrating 
the change in the structure of electric field during the plasma 
treatment. Direct experiments on deposition of the patterns of 
gold nanoparticles on silica surface by magnetron sputtering 
also supported these results [34].

Are the plasma-related effects important in these processes?  
The detailed analysis have shown that just the plasma plays a 
major role in the formation of uniform nanoparticle patterns 
by ensuring the proper structure of ion fluxes to the substrate, 
and thus driving the self-organization [37, 38] on the surface 
by governing the electric field and diffusion which are the 
main drivers of self-organization [39]. Some more details on  
analysing self-organization are published in other articles  
[40, 41]. It could be stressed that the electric field can be varied  
by surface bias [42, 43], and thus the self-organization in the 
pattern of nanoparticles can be controlled by a proper selec-
tion of the surface temperature and plasma parameters, such 
as electron temperature and density.

2.2.  Growth of carbon nanoparticles in plasma: levitation and 
tuned precipitation

Carbon nanoparticles are another example of the plasma-based 
fabrication of biologically relevant materials. In particular, 
carbon nanoparticles can be used in bioimaging applications 
[44], they can serve as fluorescent labels for applications in 
theranostics (integrated diagnosis and therapy) [45, 46] and 
cancer therapy [47]. They demonstrate excellent biocompat-
ibility and can be used as active bioimaging agents [48] and 
means for nanomedicinal therapy [49, 50].

Is the plasma useful for the production of carbon nanopar-
ticles? One of the typical processes resulting in the fabrica-
tion of carbon nanoparticles in low-temperature environment 
was implemented using asymmetric radio-frequency (RF) dis-
charge at 13.56 MHz (4–20 W) [51]. An experimental setup 
comprised the vacuum and gas equipment, and the characteri-
zation system including laser diode-detector system capable of 
detecting nucleation and growth of nanoparticles in a plasma, 
and a Quantum cascade laser measurement and control system 
capable of measuring the plasma parameters directly during 

Figure 2.  Scanning electron microscopy characterization and calculated 3D patterns of electric field and adatom density of silicon 
nanoparticles on a silica surface during the treatment in nitrogen  +  argon plasma. SEM images, low and high resolution (a). Calculated 
patterns of the adatom density field (b) and electric field (c); and four screenshots illustrating transformation of the electric field pattern 
during self-organizational ordering. The spatial ordering increases from left to right (d). Reprinted with permission from Levchenko et al 
[34]. Copyright 2011 IOP Publishing.
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the process. This system is sketched in figure 3. In the process, 
argon and acetylene were used as a plasma-sustaining gas and 
reactive precursors. In this case the ion and neutral particle 
densities in plasma were 109 cm−3 and 107 cm−3, respectively. 
The direct measurements in the similar setup and discharge 
have demonstrated a quite good agreement with the above 
mentioned density numbers [52].

Concentration of acetylene in the chamber was varied 
using the Quantum cascade laser measurement and gas con-
trol system. The quantum cascade laser was operated at the 
rate of 0.25 cm−1 within a spectral range around 1342 cm−1 
where the spectral lines of the infrared active molecules are 
present. Specifically, the density of acetylene molecules was 
measured by the spectral line 1342.35 cm−1 [53]. The abso-
lute density of acetylene molecules in the setup was achieved 
by fitting the absorption signal and comparing with the data 
stored in the database [54]. The sizes and distribution of nan-
oparticles nucleated and grown in the plasma were measured 
by transmitted light from laser beam detected by a photo-
diode in the integrated amplifier circuit. The intensity of light 
transmitted through the plasma decreases if the plasma region 
contains any nanoparticles. Scattering the light on nanopar-
ticles reveals the presence of nanoparticles nucleated in the 
plasma.

Figure 4(a) is an optical photograph of the plasma region 
with the clouds of nucleated carbon nanoparticles. Laser beam 
illuminates the clouds and they are visible as two grey spots. 
It was found that the volume of the nanoparticle-containing 
areas changed during the process. The carbon nanoparti-
cles then deposit onto the electrode when the plasma cannot 
ensure levitation, and can be collected from the surface for the 
further use. In figure 4(b) one can see the scanning electron 
microscopy image of the carbon nanoparticles collected from 
the surface in the chamber. Note very regular, near-spherical 

shape of the collected nanoparticles, typical for the structures 
nucleated without any contact with the solid surfaces (i.e. 
directly in the plasma).

How plasma-specific effects work in this technique? Plasma-
related effects indeed play a key role in the main processes 
involved in this technique. It is believed that nanoparticles 
nucleate and grow in plasmas by the following scenario [55]. 
During the initial nucleation stage, the seed particles having 
several nm in diameter coalesce owing to the electric charge 
fluctuations in a plasma [56], and finally form larger particles 
of several tens of nanometers like it occurs in neutral aerosols. 
The driving force of the coagulation is plasma-induced elec-
tric charges which lead to the attraction between negatively 
charged nanoparticles and strong irregular ion fluxes [57, 58]. 
As a result, the nanoparticles reaching 1 μm may be nucle-
ated and grown directly in plasmas, without contact with any 
surfaces or catalysts. It should be stressed that the volumetric 
concentration of such dust clouds is rather low and reaches 
(2–5)  ×  103 cm−3. Moreover, larger nanoparticles have larger 
collision cross-sections, and hence they act as collectors of 
neutral and ionized particles from the plasma, thus growing 
to up to micrometre size [59]. Importantly, the size and mass 
distributions of the plasma-grown nanoparticles are typically 
quite uniform, as it can be observed in figure 4. The reason for 
this is the re-distribution of material fluxes between larger and 
smaller charged particles in the plasma. Thus, just the plasma  
effect ensures nucleation and growth of size- and shape- 
uniform nanoparticles [51].

Figure 3.  Experimental setup for nanoparticle nucleation and 
growth in acetylene plasma. The laser diode-based system was 
used to pass light through the dust and measure the density 
of nanoparticles in the plasma. The Quantum cascade laser 
measurement and control system provided information about time-
dependent concentration of acetylene in the plasma. Reprinted with 
permission from Hundt et al [51]. Copyright 2011 AIP Publishing.

Figure 4.  Optical and scanning electron microscopy images of dust 
growing in the plasma. (a) Optical photograph of a dust nucleated 
in the plasma, illuminated by laser. The nanoparticle free region 
is visible between the two dust clouds. (b) SEM image of typical 
carbon nanoparticles collected on a particle collector. The scale 
bar in the inset at the right lower corner is 200 nm. Reprinted with 
permission from Hundt et al [51]. Copyright 2011 AIP Publishing.

J. Phys. D: Appl. Phys. 49 (2016) 273001
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2.3.  Carbon nanotube-based platforms for enzyme production  
and bacteria growth control

Let us examine how the plasma-related effects work in building 
the nanostructured biotechnological platforms. The platforms 
and materials based on carbon nanostructures such as patterns 
of vertically-aligned graphene flakes [60], single- and multi-
wall carbon nanotubes [61], vertically-aligned carbon nano-
cones and other nanostructures comprising carbon honeycomb 
lattices have interesting characteristics [62–64] relevant to the 
advanced biotechnological platforms [65–67]. Described here 
is the hybrid metal-carbon nanotube plasma-activated system 
which could be a base for the biotechnological and biomedical 
platform. The vertically-aligned multiwall nanotubes deter-
mine the most important properties of this platform.

To build the carbon nanotube—metal platform, a conven-
tional CVD technique was firstly used to prepare the base [68]. 

The thermally oxidized silicon wafer was firstly covered with 
a 10 nm layer of alumina. Then, a very thin (about 2 nm) layer 
of pure iron was sputtered onto the alumina [69]. The samples 
were then installed in the thermal furnace, and a forest of ver-
tically-aligned carbon nanotubes was grown at a constant flow 
of hydrogen and acetylene mixture, under atmospheric-pressure 
conditions (see figure 5). More details on the platform fabrica-
tion can be found elsewhere [68]. The as-grown nanotube arrays 
were then treated with argon inductively coupled plasmas, as 
shown in figure 5(d). The ready sample was loaded into a process 
chamber where a constant argon flow was maintained at a pres
sure of 5 Pa. The low-temperature plasma was then ignited in 
argon gas, and the samples were processed for several minutes.

In figure 6 one can see the scanning and transmission elec-
tron microscopy images taken from the ready platform. The 
carbon nanotube pattern (forest) consists of multiwall nanotubes 

Figure 5.  Schematic of the fabrication and plasma activation of carbon nanotube—metal platform. (a) Design of the layered substrate used for 
the growth of carbon nanotubes. (b) Continuous metal layer was heated to form array of metal particles to catalyze the nucleation of nanotubes. 
(c) Growth of carbon nanotubes on the fragmented metal catalyst in thermal furnace. (d) The ready array of carbon nanotubes is treated with 
inductively coupled plasma. (e) Microbial exposure of the platform. Reprinted with permission from Yick et al [68]. Copyright 2015 RSC.

Figure 6.  Electron microscopy characterization of the carbon nanotubes which form a part of the hybrid nanotube-metal platform. (a) and 
(b) Low- and high-resolution scanning electron microscopy images of as-prepared nanotube array (side views). (c) and (d) Top views of the 
as-prepared nanotube array. (e) and (f) High-resolution transmission electron microscopy images depicting pristine nanotubes, and (g) and 
(h) nanotubes after the plasma processing. Reprinted with permission from Yick et al [68]. Copyright 2015 RSC.

J. Phys. D: Appl. Phys. 49 (2016) 273001
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which are in general vertically-aligned but somewhat entangled. 
The gaps between the nanotubes reach hundreds of nanometres. 
Apparently, the whole array is completely impenetrable for bac-
teria whose sizes are in the micrometre range. The side views 
of the nanotubes in figure  6(a) show that the whole forest is 
20–25 μm in height, and the surface density reaches 5  ×  1010 
tubes  ×  cm−2. Importantly, the nanotubes are not absolutely 
straight but curved and entangled; this in turn makes the whole 
array even more impenetrable. The transmission electron micros-
copy has confirmed that the pristine nanotubes reach 10 nm 
in diameter and consist of up to 10 walls. Figures 6(e) and (f) 
which are also the TEM images confirm the presence of lattice 
fringes, thus proving highly ordered structure of the nanotubes. 
The plasma treatment did not change the diameter of carbon 
nanotubes, but significantly changed the internal structure, as it 
is seen in figures 6(g) and (h). Besides, the well-rounded tips of 
pristine nanotubes are opened after the plasma treatment.

The bacterial culture experiments were then performed 
using the above described platform after the plasma treat-
ment. The four kinds of bacteria commonly used in similar 
experiments, namely Bacillus subtilis, Escherichia coli, 
Staphylococcus epidermidis and Pseudomonas aeruginosa 
were cultivated and tested. The detailed description of the 
bacterial cultures, as well as characterization procedures and 
techniques can be found in the relevant publication [68].

An open source software ImageJ was then used to calculate 
the area coverage of the grown bacterial colonies. The viability 
of the cultivated bacteria was then assessed by colony forming 
units [68]. The biofilms consisting of E. coli and B. subtilis 
bacteria on carbon nanotubes were then characterized by the 
flow cytometry technique. The biofilms were collected from 
the carbon nanotubes using sterile tools, and then sonicated in 
phosphate buffered saline. After breaking the clumps by soni-
cation, they were analysed using LIVE/DEAD® BacLight™ 
staining according to the manufacturer’s instructions. The 
percentage of viable cells was calculated.

The obtained results have demonstrated that the nanotube 
forests grown on silica and metal bases can form quite useful 
biotechnological platforms. Importantly, the behaviour of the 
vertically-aligned arrays of carbon nanotubes in the presence 
of a bacterial attack differs quite significantly from that of 
entangled, dispersed nanotubes. Indeed, the vertically-aligned 
nanotube forests did not demonstrate strong antibacterial 
activity. More importantly, they show selectivity towards the 
different bacteria forming the biofilms on top of the nanotube 
arrays. The above described experiments have demonstrated 
that the plasma treatment makes the vertically-aligned nano-
tubes discriminative toward the Gram-negative and Gram-
positive bacteria. The Gram-positive bacteria (B. subtilis and 
S. epidermidis in the above discussed experiments) exhibited 
good biofilm formation ability and high numbers of viable 
bacteria on the platform after the plasma treatments, as seen 
in figure 7. On the other hand, the E. coli and P. aeruginosa 
bacteria (Gram-negative) have demonstrated no significant 
changes regardless of the presence of vertically-aligned 
carbon nanotubes and plasma processing.

This effect was explained by the structural differences in 
cell walls and membranes of these two kinds of bacteria. As a 

result of this difference (specifically, different thickness of the 
cell wall), the bacteria have demonstrated different responses 
to the treated and untreated carbon nanotubes. These experi-
ments validated the ideas to use the dense, ordered nanotube 
arrays in the capacity of biotechnological platform capable 
to selectively control the growth of various biofilms and 
biocatalyst-producing bacterial cultures for biotechnological 
applications.

To directly assess the protective effects of this platform 
against microbiological attacks, (this feature is of special 
importance when the platform is used for immobilization of 
enzymatic proteins), a dedicated experiment was conducted 
on the penetration of live bacteria (B. subtilis) into the nano-
tube pattern. The prepared and plasma-treated platforms were 
incubated in the solution with the live culture of B. subtilis, 
and the SEM images were made. Figure 8 shows the upper 
surface of the sample after 12 h in the shaker and critical 
point drying (a) and after drying in open air (b). Live bacteria 
cannot penetrate to the bottom where the enzymes are immo-
bilized, and thus the bacterial protection is ensured by a simple 
mechanical method, as shown in figure 8(c). Figures 8(d) and 
(e) demonstrate that the bacteria indeed remain on the nano-
tube array surface. More information on the experiments on 
B. subtilis penetration in the nanotube pattern can be found 
elsewhere [70].

2.4.  Plasma-engineered Si nanocrystals and Si nano- 
crystals—carbon nanotube compositions

Silicon nanocrystals are highly promising nano-objects which 
demonstrate many bio-related properties not achievable for 
other materials and systems. In particular, the silicon nano-
crystals and nanoparticles can be useful for imaging of cancer 
cells [71], for controlling active oxygen in the biomedical 
applications [72, 73], for biosensing [74], single-molecule 
tracking [75], as biocompatible fluorescent nanolabels [76], 
delivery systems [77], and nutritional food additive [78]. 
Various aspects of the silicon nanoparticle interaction with 

Figure 7.  Number of colony forming units of S. epidermidis and  
P. aeruginosa bacteria sampled from the control, pristine, and 
plasma-treated carbon nanotube arrays. Reprinted with permission 
from Yick et al [68]. Copyright 2015 RSC.

J. Phys. D: Appl. Phys. 49 (2016) 273001
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live tissues and cells are now extensively studied including 
genotoxicity and reproductive toxicity [79], behaviour in live 
cells [80, 81], applications in cell biology and medicine [82, 
83] and other in vivo applications [84].

How does the plasma work in this case? A typical process 
of the silicon nanocrystals fabrication using atmospheric pres
sure plasmas can be designed as follows [85]. The atmospheric 
pressure plasma is ignited between the two electrodes by sup-
plying radio frequency power (13.56 MHz). The electrodes 
are installed in a thin (1 mm dia.) quartz capillary, as shown 
in figure 9). The plasma-sustaining gas is argon, and silane 
diluted in argon was used as precursor for the nucleation and 
growth of silicon nanoparticles. To exclude the contact with 
ambient air, the whole setup is installed in the metal chamber 
filled with nitrogen which is supplied to the chamber and then 
pumped out [86]. This system is simple and convenient in 
operation, and does not require vacuum pumps.

In the work being discussed [85], the applied RF power was 
maintained at the level of 100 W, the argon flux was 200 sccm and 
the argon/silane flux was 50 sccm, with the inter-electrode gap of 

about 1 mm. The average silane concentration was maintained at 
the level of 10 ppm. The electric parameters were measured using 
RF voltage–current probe connected below the matching unit, 
and at the RF feedthrough outside of the nitrogen-filled chamber.

Importantly, it was demonstrated that the highly crystalline 
silicon nanoparticles can be nucleated and grown in atmospheric-
pressure low-temperature plasma at temperatures well below the 
Si crystallization threshold [85]. These results were interpreted in 
terms of an efficient heating of the nanoparticles nucleated and 
growing in non-thermal atmospheric-pressure plasmas. A careful 
analysis of the energy balance on the surface of plasma-nucle-
ated nanoparticles has revealed that nanocrystals are effectively 
heated in the atmospheric-pressure plasma.

The two modes of nanoparticle synthesis were compared, 
and important differences were revealed [85]. Specifically, the 
energy flux supplied by the ion current to the surfaces of nano-
particle is enhanced in a collisional regime, leading to a higher 
nanoparticle temperature. In this case the plasma-related 
effects lead to the low-temperature nucleation, resulting in a 
better crystalline structure of the nanoparticles.

Figure 8.  Experiments on bacterial attacks on the carbon nanotube-based platform. (a) SEM images of the upper surface of carbon 
nanotubes after holding in shaker and critical point drying and (b) after drying in open air. No changes in the structure of surface after 
critical point drying were found as compared with the as-prepared sample. (c) Schematic of the enzyme protection against microbiological 
attack. Enzymes are attached on the carbon film deposited onto the substrate surface and protected by a dense and long carbon nanotube 
forest. Bacteria cannot reach the protected enzyme molecules. (d), (e) Low- and high-resolution SEM images of B. subtilis on the surface 
of the nanotube pattern after 12 h of incubation. Bacteria were trapped in the upper layer of the nanotube pattern. Reprinted with permission 
from Kondyurin et al [70]. Copyright 2015 Elsevier.

J. Phys. D: Appl. Phys. 49 (2016) 273001



Topical Review

8

The plasma-fabricated and processed Si nanocrystals were 
also used to activate nucleation of multiwall carbon nanotubes 
without any metal catalyst, which can be harmful for the use 
in living cells or tissues. In these experiments the three dif-
ferent kinds of silicon nanocrystals were used, namely pre-
pared using laser ablation in water and by electrochemical 
etching and laser fragmentation [87].

For the carbon nanotube growth experiments, the three 
different types of silicon nanocrystals were first accumulated 
and stored in water in the form of colloids before the plasma 
treatment. Just before the plasma processing, the three types 
of nanocrystal colloids were drop-casted on a silicon wafers 
and dried in an open air. Then, the dried samples were treated 
using a microwave plasma-enhanced CVD technique [88]. 
The sample was first pre-treated in nitrogen plasma at the dis-
charge power of 300 W, pressure of 20 mbar and wafer sur-
face temperature 750 °C. The carbon nanotubes were grown 
in argon and methane mixture and discharge power of 600 W. 
The total duration of the nanotube growth process was 5 min.

The results of the carbon nanotube nucleation and growth  
were different for these different types of nanocrystals (figure 10).  
Specifically, it was found that the surface features of the 
nanocrystals are the main factors determining the nucleation 
and growth of carbon nanotubes. In particular, nanocrys-
tals with a low density of surface oxide have demonstrated 
more efficient nucleation of nanotubes. Also it was found that 
the sufficient fragmentation of nanocrystal aggregates into 
smaller assemblies or even single silicon nanocrystal was also 
an important factor. In spite of a clear difference observed, 
the actual mechanism of nanotube nucleation and growth on 
the silicon nanocrystals is still unknown, and further studies 
should be conducted to throw light on this problem and deeper 
understand the plasma-induced surface processes during 
nanocrystal functionalization [89, 90].

2.5.  Hierarchical plasma-treated gold-silver platforms for 
protein retention

Low temperature plasma treatment can significantly 
improve the properties of hybrid bioplatforms. Indeed, the 
reliable surface retention of biologically-active molecules 
and live cells such as biomolecules [91], stem and red blood 
cells [92, 93], proteins molecules and biocatalysts [3, 94], 
various living cells [95], bioethanol-producing bacteria 
[96] etc. may be useful for various practical applications 
including biofuel cells [97], food processing techniques 
[98], biosensors [7], energy conversion and drug delivery 
devices [1, 99], sensors [100], virus detection [101], micro-
fluidic devices [102], fluidised bed bioreactors [5], fixed-
bed catalytic reactors [103] and many others. Various 
metamaterials and nanoscaled systems such as mesoporous 
carbon beads [104], nanostructured polymer surfaces [105], 
silica/polymer matrices [106] and nanoporous membranes 
[107] with the nanometre-scale morphology for enhancing 
protein adsorption [108] were proposed in the capacity of a 
supporting platform. It was demonstrated recently that the 
hierarchical structures utilising vertically-aligned carbon 
nanotubes [70, 109] and patterns of vertically-aligned 
carbon nanowalls [110] also can be used as biotechnolog-
ical nano-structured platforms.

The structures comprising nanostructures made of noble 
metals are especially promising due to their chemical inert-
ness, as well as absence of carbon-containing and other 
complex organic contaminations. This requirement is of 
importance for bio- and medical applications [111] including 
precise diagnostics [112]. Moreover, such materials allow for 
the fast and convenient deactivation and sterilization.

Among other combinations, the platforms comprising gold 
base and patterns of vertically-aligned 1D silver nanostruc-
tures (i.e. nanowires) have recently attracted major attention 
[113]. 1D nanostructures (nanocones, nanofibers, nanow-
ires and others) are used in some specific applications such 
as nanoelectronics [114] and energy storage and conversion 

Figure 9.  (a) Schematic of the silicon nanoparticles growth in 
atmospheric plasma jet. (b) Photograph of the plasma jet generated 
inside a quartz capillary. (c) Representative transmission electron 
microscopy images of silicon nanoparticles synthesized in the 
atmospheric-pressure plasma jet. Reprinted with permission from 
Askari et al [85]. Copyright 2014 AIP Publishing.

Figure 10.  Transmission electron microscopy image showing 
the presence of silicon nanoparticle within a carbon nanotube. 
Reprinted with permission from Mariotti et al [87]. Copyright 2013 
IOP Publishing.
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devices [115]. It is known that silver exhibits strong antimi-
crobial activity, strongest when silver is present in the form of 
nanowires [116], nanoparticles [117, 118], and complex nano-
architectures involving silver and gold nanostructures [119]. 
Moreover, gold nanostructures are suitable for retention of 
biological molecules [120].

Based on this analysis, several successful attempts were 
made to build nanoplatforms incorporating silver nanow-
ires. In one of the successful experiments (figure 11), a large 
dense pattern of silver nanowires was grown on the nano-
porous aluminium oxide membrane. The grown pattern was 
dense enough to ensure small gaps between the nanowires and 
hence, efficient protection from the microbiological attacks 
(see section 2.3). Specifically, the gaps did not exceed several 
hundred nanometres and thus made the bottom of the platform 
not accessible for most bacteria which have a size reaching 
one to several micrometres.

What is the plasma role in this case? The low-temperature 
plasma treatment was used to control the structure, state, and 
morphology of the silver nanowire pattern due to the plasma-
specific effects, i.e. bombardment of the nanostructures by ener-
getic ions accelerated across the plasma bulk—surface electric 

field. Besides, the ability of the platform to retain the proteins at 
the bottom layers, i.e. where they are protected from the effect 
of live bacteria, was also controlled by the plasma treatment.

The samples were treated with the atmospheric-pressure 
plasma jet, i.e. the vacuum and gas-containing chambers were 
not used in this case. More information about the discharge, 
design of the plasma generating reactor, and plasma treatment 
can be found elsewhere [85, 121]. The treated samples were 
then tested for the ability to capture and immobilize the pro-
teins. The commonly used Bovine Serum Albumin was used 
in these experiments, to avoid contamination. This protein is 
cheap and commonly available, and can be used as a reference 
in many experiments including ELISA.

The conducted experiments have demonstrated that the 
atmospheric-pressure plasma treatment (as well as processing 
with the low-temperature inductively coupled plasmas) 
indeed can be helpful in controlling the structure and morph
ology of the hybrid platforms, and importantly, can control 
the ability of retaining active protein molecules and other 
species. Specifically, it was demonstrated that the amount of 
retained protein may be increased due to the plasma-related 
effects.

Figure 11.  Fabrication of the platform with silver nanowires, and scanning electron microscopy images of the nanowires. Plasma treatment 
of nanowires (a); dissolution of aluminum oxide in acid (b), and 3D model of the ready platform (c). (d) Optical photography of the Ag 
nanowires, top view. (e)–(g) Low- and high-magnification scanning electron microscopy images of silver nanowires after dissolution of the 
membrane, without the plasma treatment. The length of nanowires reached several tens of μm. Scale bars are 10 μm (e) and 500 nm (f), (g). 
(h)–(k) Low- and high-magnification scanning electron microscopy images of silver nanowires after dissolution of the membrane in acid 
and the plasma treatment. The nanowires are much shorter after the plasma treatment, as seen from thecomparison of panels (g) and (k). 
Scale bars are 1 μm (h) and 500 nm (i), (k). Reprinted with permission from Fang et al [133].
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We should stress here that the alloyed nanostructures, 
as well as nanostructures with complex chemical composi-
tion are not discussed in much detail in this review, which 
is mainly dealing with the plasma-related effects. The pro-
cesses in plasma environment consisting of many com-
pounds (e.g. when plasma is sustained in the mixture of 
reagent gases) have very complex nature, and the interested 
reader should refer to the topical publications. Nevertheless, 
the alloyed nanostructures are among the most important 
plasma-made nanoscaled materials, and thus we will list here 
several typical examples. Among many others, the following 
examples could be indicated. Fabrication of hydroxyapatite 
bioceramics on TiAlV orthopaedic alloys for biomedical 
applications [122] is an excellent example when plasma 
enabled creation of complex alloyed nanostructure. Alloyed 
AuxAg1−x nanoparticles [123] made via microplasma-chem-
ical synthesis for the applications requiring tunable real-time 
plasmonic responses is one more typical example. The amor-
phous silicon quantum dots were also prepared by plasma 
hydrogenation [124]. More details on the atmospheric pres
sure plasma-enabled synthesis and composition tuning of 
complex alloyed nanostructures could be found in the topical 
review [86].

3.  Plasma—a tool for treatment and 
functionalization

Here we will examine two examples of the plasma applica-
tion for the surface functionalization and direct activation. 
Specifically, we consider the control of carbon nanotube 
arrays biocompatibility by plasma post-processing, and direct 
effect of the low-temperature plasmas onto living cells.

3.1.  Plasma treatment of carbon nanotube arrays to control 
growth of bacterial biofilms

We have discussed the possibility to control the viability of 
the cultivated bacteria on plasma-treated nanostructures (see 
section 2.3 above), but another interesting question is the con-
trol of bacterial biofilm formation.

3.1.1.  Can the plasma treatment control the biofilm formation?  
Several studies have shown that carbon nanotubes have 
antibacterial properties (see section  2.3). However, most of 
these studies focus on dispersed nanotubes interactions with 
free living (planktonic) bacteria, rather than the most preva-
lent bacterial growth form—biofilms. Biofilm cells live in a 
multi-layer community enclosed by an extracellular matrix 
[125]. This lifestyle offers bacteria higher protection from 
external stresses and thus can lead to problems of eradicat-
ing unwanted biofilms. While some bacterial biofilms can be 
useful for waste water treatment [126, 127], starch hydroly-
sis [128], microbial fuel cells [5, 129] and antifouling coat-
ings [130, 131] others are harmful, fouling films or pathogens 
causing hard to treat infections [132].

The effects of nanotube arrays on bacteria of different spe-
cies have recently been investigated [68]. It was found that 
unlike dispersed nanotubes they exhibit only mild antibacte-
rial effect and thus their biocompatibility is higher. Nanotube 
arrays treated with inductively coupled plasma retained mor-
phological integrity of the nanostructure, in particular in the 
presence of bacteria and their liquid growth media. Bacteria 
stayed on top of the arrays and cannot penetrate through the 
structure. Both Gram positive (B. subtilis) and Gram negative 
(E. coli) bacteria were tested for survival in the presence of 
nanotube arrays. Interestingly, only B. subtilis seemed to be 

Figure 12.  Confocal images of P. aeruginosa biofilms cells after argon plasma treatment stained with Bac Light Live/Dead. Viable cells 
are stained green and dead cells are stained red (A) Untreated control, (B) 10 min argon gas control, (C) 1 min plasma, (D) 3 min plasma, 
(E) 5 min plasma and (F) 10 min plasma treatment. Each image shows a representative horizontal section (main picture), and two vertical 
sections (to the right of and below the green lines on the right-hand side and bottom of the main picture, respectively). The vertical 
sections correspond to the two yellow lines in the main picture. Reprinted with permission from Mai-Prochnow et al [135].
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inhibited by pristine arrays but not by the plasma functional-
ized nanotubes.

Investigation on how plasma treatment affects surface 
attached bacteria has implications for the use of biomaterials, 
such as medical implants [133]. Moreover, these studies are 
important for deeper understanding the processes occur-
ring during the plasma effects on the bacterial biofilms. 
Commonly, three antibacterial methods for carbon nanotubes 
were reported: (1) oxidative stress, (2) metal toxicity and 
(3) mechanical piercing [134]. It was suggested that plasma 
assisted functionalising of carbon nanotubes may scavenge 
free radicals and lead to less bacterial inhibition of the func-
tionalised samples [68]. Furthermore, it was proposed that 
by functionalising nanotube arrays the hydrophobicity is 
increased, reducing the piercing ability. It can be concluded 
that plasma-assisted functionalising of the carbon nanotube 
arrays leads to higher biocompatibility.

In another relevant study, the behaviour of bacterial bio-
films on stainless steel coupons was studied [135]. The direct 
effect of the plasma treatment on surface attached bacterial 
communities was investigated using the antibiotic-resistant 
bacterium P. aeruginosa as a model organism to determine 
whether cells can develop resistance to the plasma treatment. 
Biofilms on stainless steel coupons could be completely 
removed by 10 min argon plasma treatment (figure 12).  
Because of the multi-factorial action of plasma on living 
cells (reactive oxygen and nitrogen species (RONS), UV, and 
excited molecules) it is widely assumed that bacterial cells 
are unlikely to develop a resistance to the plasma treatment as 
seen with many antibiotics. However, in the study being dis-
cussed some bacteria were shown to survive a shorter plasma 

treatment and then exhibit a higher resistance to subsequent 
treatments. These cells had permanent genetic changes. In the 
case of P. aeruginosa it is a redox active compound phenazine 
[135].

3.2. Toxicity of nanoparticles and nanocomposites—effect of 
treatment, outer coatings, and material

The toxicity of nanoparticles, nanomaterials and various 
surface-based nanostructures and nanosystems is one more 
important issue that could be affected by plasma treatment and 
other surface processes, including application of thin coatings 
to the nanoparticles and surface-active treatment [136]. Even 
gold nanoparticles should be considered as a nanosystem 
requiring specific considerations in relation to the toxicity in 
particular conditions and environment [137], and their tox-
icity depends on the physiochemical properties and size [138].

Material toxicity can be affected by many routes, and sur-
face coating and modification are among the most efficient 
techniques for nanoscaled particles. Indeed, the toxicity of 
iron oxide nanoparticles (important system for medical appli-
cations) could be tuned by, e.g. silica (silicon oxide) coating, 
as confirmed by in vitro studies [139]. Toxicity of silver nano-
particles essentially depends of their size and surface state, 
and surface coating (e.g. using polyvinylpyrrolidone) could 
significantly change the toxicity level [140]. Cytotoxicity of 
silver nanocrystallites also could be tuned by surface coatings 
[141]. Carbon films could be used to tune the toxicity charac-
teristics of iron oxide nanoparticles [142].

Toxicity of graphene fragment is also an issue, and plasma 
treatment could be a good solution in this case (provided that 

Figure 13.  AFM images of fixed NHA (E6/E7), taken using the Igor Pro 4 software, 90  ×  90 μm scans. Upper row (A), topographies of 
2D images of E6/E7 cells before and 48 h and 72 h after the plasma treatment; lower row (B), corresponding deflection signal images. Cells 
were treated with cold plasma for 30 s. All images presented here were obtained in a contact mode at room temperature and scanned in 
PBS. Reprinted with permission from Recek et al [156].
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the graphene-specific properties are not disturbed by the treat-
ment) [143, 144]. On the other hand, nanoscaled particles 
could have quite attractive clinical potential [145, 146], even 
when they possess toxic properties. Plasma and chemical mod-
ification of surface structures and properties of the nanoscaled 
carbonous materials is also quite promising approach [147].

Toxicity and biological activity of carbon nanotubes and 
nanowires, owing to their small diameter and often acute ends, 
is also an issue [148]. In this case, plasma could be used to 
modify the shape and state (open/closed tips) of the nanotube 
arrays, and thus the toxicity and biological activity could be 
controlled along with other important properties such as wet-
tability [70, 149].

3.3.  Direct effect of low-temperature plasma on living cells

To deeper understand the plasma effect onto biomaterials and 
optimize the processes of biomaterial fabrication and func-
tionalization, the direct effect of plasma streams onto living 
cells should be studied. Besides, such studies are important 
for some hard-pressing medical problems such as cancer treat-
ment by direct plasma effect onto cells [150–152] and via the 
nanostructures [153], as well as for other medical applications 
such as electric surgery [154, 155]. These and other publica-
tions represent a good deal of accumulated data on the effect 
of plasma onto living cell; we will here briefly examine only 
one typical example.

Specifically, the selective effect of cold plasma on shape 
and morphology of normal human astrocytes (NHA) and glio-
blastoma cells was the aim of the research [156]. The atomic 
force microscopy (AFM) technique has been used to image 
the cells before and after the plasma treatment (figure 13).

In these experiments, a cold plasma jet was used [157]. 
It consists of a central electrode installed in the glass tube, 
and the second electrode placed outside. A pulsed voltage was 
applied to the central electrode, whereas the outside electrode 
was grounded. Helium gas was supplied to the glass tube to 
sustain the discharge and produce the plasma jet. The experi-
ments were mainly aimed to study the selective effect of cold 
plasma jet treatment on shape and morphology of the fixed 
NHA and glioblastoma cells. The cell viability was assessed 
using a standard colorimetric assay for measuring the activity 
of mitochondria and cellular dehydrogenase enzymes.

Both NHA E6/E7 and glioblastoma U87 cells were pro-
cessed with the cold plasma jet for various time durations. 
The results of the MTT assay characterization have shown 
that a significant part of U87 cells died after the short pro-
cessing, whereas from 90 to 60% of E6/E7 cells have retained 
the viability. Repeated experiments and comparison with the 
reference cultures have demonstrated that the 30 s treatment 
is a threshold duration required for the significant decrease of 
viability. More details on the experiments and obtained results 
can be found elsewhere [156].

The morphological features on U87 and E6/E7 cells were 
then studied using the AFM technique. The AFM studies 
were conducted in a contact mode by acquiring the height of 
contours, and surface morphology by the deflection signal. 
Figure 13(a) shows the topographical parameters of complete 

E6/E7 cell, and figure 13(b) presents the corresponding deflec-
tion image. The information in the topography image (figure 
13(a)) is dominated by the nucleus, although other features, 
such as the cell boundaries and the microvilli or invadopodia 
can be clearly distinguished. The untreated U87 and E6/E7 
cells are extensively spread; cell body, shape, morphology, 
microvilli and invadopodia were clearly visible on the AFM 
images. The position of the cell bodies can be seen as well as 
where the cells meet (figure 13). Large fibre structures were 
seen on images of both U87 and E6/E7 adherent cells, although 
they were more pronounced on E6/E7 cells (figure 13).

The experiments with plasma treated fixed cells bring to 
the light new important understanding of the architecture and 
assembly of the cell membrane in NHA and glioblastoma 
cells. They also contribute to the understanding the complex 
interaction between the plasma and the cell membrane surface. 
These differences could be the possible reason for the selec-
tive effect of plasma on glioblastoma cells and may signifi-
cantly contribute to cell viability after the plasma treatment.

4.  Concluding remarks

In this review, we have briefly examined various approaches 
based on the use of low-temperature plasmas to fabricate 
nanostructured biomaterials and systems exhibiting biological 
activity for medical treatment, biological inertness for drug 
delivery system, and other features that make them attractive. 
In particular, we have discussed the plasma-assisted fabrica-
tion of gold and silicon nanoparticles for bio-applications; 
atmospheric-pressure plasma fabrication of carbon nanopar-
ticles for bioimaging and cancer therapy; plasma-activated 
carbon nanotube-based platforms for enzyme production 
and bacteria growth control, and other applications of low-
temperature plasmas in the production of biologically-active 
materials. In the considered cases the effect of low-temper
ature plasmas have led to better results, as compared with the 
conventional neutral-gas based techniques.

Acknowledgments

IL acknowledges the support from the School of Chemistry, 
Physics and Mechanical Engineering, Science and Engineer-
ing Faculty, Queensland University of Technology. This work 
was partially supported by the Australian Research Council 
and CSIRO’s OCE Science Leadership Scheme, and partially 
supported by Slovenian Research Agency (ARRS), project 
L2-6769.

References

	 [1]	 Schoonen L and van Hest J C 2014 Functionalization of 
protein-based nanocages for drug delivery applications 
Nanoscale 6 7124–41

	 [2]	 Martinho N, Damgé C and Reis C P 2011 Recent advances in 
drug delivery systems J. Biomater. Nanobiotechnol. 2 510–26

	 [3]	 Bilek M M M 2014 Biofunctionalization of surfaces 
by energetic ion implantation: review of progress on 

J. Phys. D: Appl. Phys. 49 (2016) 273001

http://dx.doi.org/10.1039/c4nr00915k
http://dx.doi.org/10.1039/c4nr00915k
http://dx.doi.org/10.1039/c4nr00915k
http://dx.doi.org/10.4236/jbnb.2011.225062
http://dx.doi.org/10.4236/jbnb.2011.225062
http://dx.doi.org/10.4236/jbnb.2011.225062


Topical Review

13

applications in implantable biomedical devices and 
antibody microarrays Appl. Surf. Sci. 310 3–10

	 [4]	 Regil R and Sandoval G 2013 Biocatalysis for biobased 
chemicals Biomolecules 3 812–47

	 [5]	 Godia F and Sola C 1995 Fluidized bed bioreactors 
Biotechnol. Prog. 11 479–97

	 [6]	 Gilbert E, Mosher M, Gottipati A and Elder S 2014 A novel 
through-thickness perfusion bioreactor for the generation 
of scaffold-free tissue engineered cartilage Processes 
2 658–74

	 [7]	 Wanekaya A K, Chen W, Myung N V and Mulchandani A 
2006 Nanowire-based electrochemical biosensors 
Electroanalysis 18 533–50

	 [8]	 Arnold M A and Meyerhoff M E 1988 Recent advances in 
the development and analytical applications of biosensing 
probes Crit. Rev. Anal. Chem. 20 149–96

	 [9]	 Havard H and Miles J 2015 Biofilm and orthopaedic implant 
infection J. Trauma Orthop. 03 54–7

	[10]	 Wesley M J, Lerner R N, Kim E S, Islam M D S and Liu Y 
2011 Biological fixed film Water Environ. Res. 83 1150–86

	[11]	 Levchenko I et al 2015 Hybrid carbon-based nanostructured 
platforms for the advanced bioreactors J. Nanosci. 
Nanotechnol. 15 10074–90

	[12]	 Levchenko I, Keidar M, Mai-Prochnow A, Modic M, 
Cvelbar U, Fang J and Ostrikov K 2015 Plasma treatment 
for next-generation nanobiointerfaces Biointerphases 
10 029405

	[13]	 Tang L, Wang Y and Li J 2015 The graphene/nucleic acid 
nanobiointerface Chem. Soc. Rev. 44 6954–80

	[14]	 Gu X, Zheng Y, Cheng Y, Zhong S and Xi T 2009 In vitro 
corrosionand biocompatibility of binary magnesium alloys 
Biomaterials 30 484–98

	[15]	 Nichols S P, Koh A, Storm W L, Shin J H and 
Schoenfisch M H 2013 Biocompatible materials for 
continuous glucose monitoring devices Chem. Rev. 
113 2528–49

	[16]	 Tie D, Feyerabend F, Müller W D, Schade R, Liefeith K, 
Kainer K U and Willumeit R 2013 Antibacterial 
biodegradable Mg–Ag alloys Eur. Cells Mater. 25 284–98

	[17]	 Dolanský J, Henke P, Kubát P, Fraix A, Sortino S and 
Mosinger J 2015 Polystyrene nanofiber materials 
for visible-light-driven dual antibacterial action via 
simultaneous photogeneration of NO and O2(1Δg) ACS 
Appl. Mater. Interfaces 7 22980–9

	[18]	 Levchenko I, Romanov M and Keidar M 2003 Investigation of 
a steady-state cylindrical magnetron discharge for plasma 
immersion treatment J. Appl. Phys. 94 1408–13

	[19]	 Levchenko I, Keidar M, Xu S, Kersten H and Ostrikov K 2013 
Low-temperature plasmas in carbon nanostructure synthesis 
J. Vac. Sci. Technol. B 31 050801

	[20]	 Chu P K 2007 Plasma-treated biomaterials IEEE Trans. 
Plasma Sci. 35 181–7

	[21]	 Ostrikov K, Cvelbar U and Murphy A B 2011 Plasma nanosci-
ence: setting directions, tackling grand challenges J. Phys. 
D: Appl. Phys. 44 174001

	[22]	 Jain S, Hirst D G and O’Sullivan J M 2012 Gold nanoparticles 
as novel agents for cancer therapy Br. J. Radiol. 85 101–13

	[23]	 Kodiha M, Wang Y M, Hutter E, Maysinger D and Stochaj U 
2015 Off to the organelles—killing cancer cells with 
targeted gold nanoparticles Theranostics 5 357–70

	[24]	 Anker J N, Hall W P, Lyandres O, Shah N C, Zhao J and van 
Duyne R P 2008 Biosensing with plasmonic nanosensors 
Nat. Mater. 7 442–53

	[25]	 Pengo P, Baltzer L, Pasquato L and Scrimin P 2007 Substrate 
modulation of the activity of an artificial nanoesterase made 
of peptide-functionalized gold nanoparticles Angew. Chem. 
Int. Ed. 46 400–6

	[26]	 Lhoste K, Malaquin L, Billot L, Haghiri-Gosnet A M and 
Chen Y 2011 Fabrication of high density gold nanoparticle 

arrays on glass for high sensitivity bio-detection 
Microelectron. Eng. 88 2474–7

	[27]	 Phuc T D, Yoshino M, Yamanaka A and Yamamoto T 2013 
Fabrication of gold nanodot array on plastic films for  
bio-sensing applications Proc. CIRP 5 47–52

	[28]	 Willner I, Baron R and Willner B 2007 Integrated 
nanoparticle-biomolecule systems for biosensing and 
bioelectronics Biosens. Bioelectron. 22 1841–52

	[29]	 Ostrikov K and Mehdipour H 2012 Nanoscale plasma 
chemistry enables fast, size-selective nanotube nucleation 
J. Am. Chem. Soc. 134 4303–12

	[30]	 Ding H, Yong K-T, Roy I, Pudavar H E, Law W C, Bergey E J 
and Prasad P N 2007 Gold nanorods coated with multilayer 
polyelectrolyte as contrast agents for multimodal imaging 
J. Phys. Chem. C 111 12552–7

	[31]	 Miyanishi T, Tsunoi Y, Terakawa M and Obara M 2012 
High-intensity near-field generation for silicon nanoparticle 
arrays with oblique irradiation for large-area high-
throughput nanopatterning Appl. Phys. B 107 323–32

	[32]	 Whitney A V, Elam J W, Zou S, Zinovev A V, Stair P C, 
Schatz G C and van Duyne R P 2005 Localized surface 
plasmon resonance nanosensor: a high-resolution  
distance-dependence study using atomic layer deposition 
J. Phys. Chem. B 109 20522–8

	[33]	 Yajadda M M A, Levchenko I and Ostrikov K 2011 Gold 
nanoresistors with near-constant resistivity in the cryogenic-
to-room temperature range J. Appl. Phys. 110 023303

	[34]	 Levchenko I, Kumar S, Yajadda M M A, Han Z J, Furman S 
and Ostrikov K 2011 Self-organization in arrays of surface-
grown nanoparticles: characterization, control, driving 
forces J. Phys. D: Appl. Phys. 44 174020

	[35]	 Xu S, Huang S Y, Levchenko I, Zhou H P, Wei D Y, Xiao S Q, 
Xu L X, Yan W S and Ostrikov K 2011 Highly efficient 
silicon nanoarray solar cells by a single-step plasma-based 
process Adv. Energy Mat. 1 373–6

	[36]	 Levchenko I, Ostrikov K, Rider A E, Tam E, Vladimirov S V 
and Xu S 2007 Growth kinetics of carbon nanowall-like 
structures in low-temperature plasmas Phys. Plasmas 
14 063502

	[37]	 Levchenko I, Korobov M, Romanov M and Keidar M 2004 
Ion current distribution on a substrate during nanostructure 
formation J. Phys. D: Appl. Phys. 37 1690–5

	[38]	 Levchenko I, Ostrikov K, Mariotti D and Švrček V 2009 Self-
organized carbon connections between catalyst particles on 
a silicon surface exposed to atmospheric-pressure Ar  +  CH4 
microplasmas Carbon 47 2379–90

	[39]	 Cvelbar U, Ostrikov K, Levchenko I, Mozetic M and 
Sunkara M K 2009 Control of morphology and nucleation 
density of iron oxide nanostructures by electric conditions 
on iron surfaces exposed to reactive oxygen plasmas Appl. 
Phys. Lett. 94 211502

	[40]	 Levchenko I, Ostrikov K and Mariotti D 2009 The production 
of self-organized carbon connections between Ag 
nanoparticles using atmospheric microplasma synthesis 
Carbon 47 344–7

	[41]	 Levchenko I, Ostrikov K and Long J D 2007 Plasma-assisted 
self-sharpening of platelet-structured single-crystalline 
carbon nanocones Appl. Phys. Lett. 91 113115

	[42]	 Keidar M, Beilis I I, Boxman R L and Goldsmith S 1996 2D 
expansion of the low-density interelectrode vacuum arc plasma 
jet in an axial magnetic field J. Phys. D: Appl. Phys. 29 1973

	[43]	 Tsakadze Z L, Levchenko I, Ostrikov K and Xu S 2007 
Plasma-assisted self-organized growth of uniform carbon 
nanocone arrays Carbon 45 2022

	[44]	 Ray S C, Saha A, Jana N R and Sarkar R 2009 Fluorescent 
carbon nanoparticles: synthesis, characterization, and 
bioimaging application J. Phys. Chem. C 113 18546–51

	[45]	 Liu Z and Liang X J 2012 Nano-carbons as theranostics 
Theranostics 2 235

J. Phys. D: Appl. Phys. 49 (2016) 273001

http://dx.doi.org/10.1016/j.apsusc.2014.03.097
http://dx.doi.org/10.1016/j.apsusc.2014.03.097
http://dx.doi.org/10.1016/j.apsusc.2014.03.097
http://dx.doi.org/10.3390/biom3040812
http://dx.doi.org/10.3390/biom3040812
http://dx.doi.org/10.3390/biom3040812
http://dx.doi.org/10.1021/bp00035a001
http://dx.doi.org/10.1021/bp00035a001
http://dx.doi.org/10.1021/bp00035a001
http://dx.doi.org/10.3390/pr2030658
http://dx.doi.org/10.3390/pr2030658
http://dx.doi.org/10.3390/pr2030658
http://dx.doi.org/10.1002/elan.200503449
http://dx.doi.org/10.1002/elan.200503449
http://dx.doi.org/10.1002/elan.200503449
http://dx.doi.org/10.1080/00078988808048811
http://dx.doi.org/10.1080/00078988808048811
http://dx.doi.org/10.1080/00078988808048811
http://dx.doi.org/10.2175/106143011X13075599869254
http://dx.doi.org/10.2175/106143011X13075599869254
http://dx.doi.org/10.2175/106143011X13075599869254
http://dx.doi.org/10.1166/jnn.2015.11686
http://dx.doi.org/10.1166/jnn.2015.11686
http://dx.doi.org/10.1166/jnn.2015.11686
http://dx.doi.org/10.1116/1.4922237
http://dx.doi.org/10.1116/1.4922237
http://dx.doi.org/10.1039/C4CS00519H
http://dx.doi.org/10.1039/C4CS00519H
http://dx.doi.org/10.1039/C4CS00519H
http://dx.doi.org/10.1016/j.biomaterials.2008.10.021
http://dx.doi.org/10.1016/j.biomaterials.2008.10.021
http://dx.doi.org/10.1016/j.biomaterials.2008.10.021
http://dx.doi.org/10.1021/cr300387j
http://dx.doi.org/10.1021/cr300387j
http://dx.doi.org/10.1021/cr300387j
http://dx.doi.org/10.1021/acsami.5b06233
http://dx.doi.org/10.1021/acsami.5b06233
http://dx.doi.org/10.1021/acsami.5b06233
http://dx.doi.org/10.1063/1.1590054
http://dx.doi.org/10.1063/1.1590054
http://dx.doi.org/10.1063/1.1590054
http://dx.doi.org/10.1116/1.4821635
http://dx.doi.org/10.1116/1.4821635
http://dx.doi.org/10.1109/TPS.2006.888587
http://dx.doi.org/10.1109/TPS.2006.888587
http://dx.doi.org/10.1109/TPS.2006.888587
http://dx.doi.org/10.1088/0022-3727/44/17/174001
http://dx.doi.org/10.1088/0022-3727/44/17/174001
http://dx.doi.org/10.1259/bjr/59448833
http://dx.doi.org/10.1259/bjr/59448833
http://dx.doi.org/10.1259/bjr/59448833
http://dx.doi.org/10.7150/thno.10657
http://dx.doi.org/10.7150/thno.10657
http://dx.doi.org/10.7150/thno.10657
http://dx.doi.org/10.1038/nmat2162
http://dx.doi.org/10.1038/nmat2162
http://dx.doi.org/10.1038/nmat2162
http://dx.doi.org/10.1002/anie.200602581
http://dx.doi.org/10.1002/anie.200602581
http://dx.doi.org/10.1002/anie.200602581
http://dx.doi.org/10.1016/j.mee.2010.11.053
http://dx.doi.org/10.1016/j.mee.2010.11.053
http://dx.doi.org/10.1016/j.mee.2010.11.053
http://dx.doi.org/10.1016/j.procir.2013.01.009
http://dx.doi.org/10.1016/j.procir.2013.01.009
http://dx.doi.org/10.1016/j.procir.2013.01.009
http://dx.doi.org/10.1016/j.bios.2006.09.018
http://dx.doi.org/10.1016/j.bios.2006.09.018
http://dx.doi.org/10.1016/j.bios.2006.09.018
http://dx.doi.org/10.1021/ja210813s
http://dx.doi.org/10.1021/ja210813s
http://dx.doi.org/10.1021/ja210813s
http://dx.doi.org/10.1021/jp0733419
http://dx.doi.org/10.1021/jp0733419
http://dx.doi.org/10.1021/jp0733419
http://dx.doi.org/10.1007/s00340-012-4995-8
http://dx.doi.org/10.1007/s00340-012-4995-8
http://dx.doi.org/10.1007/s00340-012-4995-8
http://dx.doi.org/10.1021/jp0540656
http://dx.doi.org/10.1021/jp0540656
http://dx.doi.org/10.1021/jp0540656
http://dx.doi.org/10.1063/1.3610497
http://dx.doi.org/10.1063/1.3610497
http://dx.doi.org/10.1088/0022-3727/44/17/174020
http://dx.doi.org/10.1088/0022-3727/44/17/174020
http://dx.doi.org/10.1002/aenm.201100085
http://dx.doi.org/10.1002/aenm.201100085
http://dx.doi.org/10.1002/aenm.201100085
http://dx.doi.org/10.1063/1.2744353
http://dx.doi.org/10.1063/1.2744353
http://dx.doi.org/10.1088/0022-3727/37/12/014
http://dx.doi.org/10.1088/0022-3727/37/12/014
http://dx.doi.org/10.1088/0022-3727/37/12/014
http://dx.doi.org/10.1016/j.carbon.2009.04.031
http://dx.doi.org/10.1016/j.carbon.2009.04.031
http://dx.doi.org/10.1016/j.carbon.2009.04.031
http://dx.doi.org/10.1063/1.3147193
http://dx.doi.org/10.1063/1.3147193
http://dx.doi.org/10.1016/j.carbon.2008.10.005
http://dx.doi.org/10.1016/j.carbon.2008.10.005
http://dx.doi.org/10.1016/j.carbon.2008.10.005
http://dx.doi.org/10.1063/1.2784932
http://dx.doi.org/10.1063/1.2784932
http://dx.doi.org/10.1088/0022-3727/29/7/034
http://dx.doi.org/10.1088/0022-3727/29/7/034
http://dx.doi.org/10.1016/j.carbon.2007.05.030
http://dx.doi.org/10.1016/j.carbon.2007.05.030
http://dx.doi.org/10.1021/jp905912n
http://dx.doi.org/10.1021/jp905912n
http://dx.doi.org/10.1021/jp905912n
http://dx.doi.org/10.7150/thno.4156
http://dx.doi.org/10.7150/thno.4156


Topical Review

14

	[46]	 Kharin A, Syshchyk O, Geloen A, Alekseev S, Rogov A, 
Lysenko V and Timoshenko V 2015 Carbon fluoroxide 
nanoparticles as fluorescent labels and sonosensitizers for 
theranostic applications Sci. Technol. Adv. Mater. 16 044601

	[47]	 Kumar V, Toffoli G and Rizzolio F 2013 Fluorescent carbon 
nanoparticles in medicine for cancer therapy ACS Med. 
Chem. Lett. 4 1012–13

	[48]	 Liu R, Wu D, Liu S, Koynov K, Knoll W and Li Q 2009 An 
aqueous route to multicolor photoluminescent carbon dots 
using silica spheres as carriers Angew. Chem. Int. Ed. Engl. 
48 4598–601

	[49]	 Hong G, Diao S, Antaris A L and Dai H 2015 Carbon 
nanomaterials for biological imaging and nanomedicinal 
therapy Chem. Rev. 115 10816–906

	[50]	 Bogaerts A, Khosravian N, van der Paal J, Verlackt C C W, 
Yusupov M, Kamaraj B and Neyts E C 2016 Multi-level 
molecular modelling for plasma medicine J. Phys. D: Appl. 
Phys. 49 054002

	[51]	 Hundt M, Sadler P, Levchenko I, Wolter М, Kersten H and 
Ostrikov K 2011 Real-time monitoring of nucleation-
growth cycle of carbon nanoparticles in acetylene plasmas 
J. Appl. Phys. 109 123305

	[52]	 Ketelsen H 2009 Mie-ellipsometrie an staubigen plasmen 
Dipl. Eng. PhD Thesis University of Kiel, Germany

	[53]	 Kabbadj Y, Herman M, Lombardi G D, Fusina L and 
Johns J W 1991 J. Mol. Spectrosc. 150 535–47

	[54]	 Rothmann L 2009 HITRAN Database URL www.cfa.harvard.
edu/hitran

	[55]	 Watanabe Y 2006 Formation and behaviour of nano/micro-
particles in low pressure plasmas J. Phys. D: Appl. Phys. 
39 R329

	[56]	 Cui C and Goree J 1994 Fluctuations of the charge on a dust 
grain in a plasma IEEE Trans. Plasma Sci. 22 151–8

	[57]	 Mankelevich Y A, Olevanov M A and Rakhimova T V 2008 
Dust particle coagulation mechanism in low-pressure 
plasma: rapid growth and saturation stage modeling Plasma 
Sources Sci. Technol. 17 015013

	[58]	 Mankelevich Y, Olevanov M, Pal’ A, Rakhimova T, 
Ryabinkin A, Serov A and Filippov A 2009 Coagulation 
of dust grains in the plasma of an RF discharge in argon 
Plasma Phys. Rep. 35 191–9

	[59]	 Hollenstein Ch 2000 The physics and chemistry of dusty 
plasmas Plasma Phys. Control. Fusion 42 R93–104

	[60]	 Levchenko I, Ostrikov K, Zheng J, Li X, Keidar M and Teo K 
2016 Scalable graphene production: perspectives and 
challenges of plasma applications Nanoscale 8 10511–27

	[61]	 Keidar M, Levchenko I, Arbel T, Alexander M, Waas A M 
and Ostrikov К 2008 Magnetic-field-enhanced synthesis of 
single-wall carbon nanotubes in arc discharge J. Appl. Phys. 
103 094318

	[62]	 Keidar M, Raitses Y, Knapp A and Waas A M 2006 Current-
driven ignition of single-wall carbon nanotubes Carbon 
44 1022–4

	[63]	 Sun X, Li R, Stansfield B, Dodelet J P, Menard G and 
Desilets S 2007 Controlled synthesis of pointed carbon 
nanotubes Carbon 45 732–7

	[64]	 Burian A, Dore J C, Kyotani T and Honkimaki V 2005 
Structural studies of oriented carbon nanotubes in alumina 
channels using high energy x-ray diffraction Carbon 
43 2723–9

	[65]	 Shim M, Kam N W S, Chen R J, Li Y and Dai H 2002 
Functionalization of carbon nanotubes for biocompatibility 
and biomolecular recognition Nano Lett. 2 285–8

	[66]	 Fisher C, Rider A E, Han Z J, Kumar S, Levchenko I and 
Ostrikov K 2012 Applications and nanotoxicity of carbon 
nanotubes and graphene in biomedicine J. Nanomater. 
2012 315185

	[67]	 Peng X and Wong S S 2009 Functional covalent chemistry of 
carbon nanotube surfaces Adv. Mater. 21 625–42

	[68]	 Yick S, Mai-Prochnow A, Levchenko I, Fang J, Bull M K, 
Bradbury M, Murphy A B and Ostrikov K 2015 The effects 
of plasma treatment on bacterial biofilm formation on 
vertically-aligned carbon nanotube arrays RSC Adv. 5 5142

	[69]	 Levchenko I, Romanov M, Keidar M and Beilis I I 2004 
Stable plasma configurations in a cylindrical magnetron 
discharge Appl. Phys. Lett. 85 2202–4

	[70]	 Kondyurin A, Levchenko I, Han Z, Yick S, Mai-Prochnow A, 
Fang J, Ostrikov K and Bilek M 2013 Hybrid graphite film-
carbon nanotube platform for enzyme immobilization and 
protection Carbon 65 287–95

	[71]	 Erogbogbo F, Yong K T, Roy I, Xu G X, Prasad P and 
Swihart M T 2008 Biocompatible luminescent silicon 
quantum dots for imaging of cancer cells ACS Nano 
5 873–8

	[72]	 Timoshenko V Y, Kudryavtsev A A, Osminkina L A, 
Vorontsov A S, Ryabchikov Y V, Belogorokhov I A, 
Kovalev D and Kashkarov P K 2006 Silicon nanocrystals 
as photosensitizers of active oxygen for biomedical 
applications JETP Lett. 83 423–6

	[73]	 Kovalev D and Fujii M 2005 Silicon nanocrystals: photo-
sensitizers for oxygen molecules Adv. Mat. 17 2531–44

	[74]	 Borsella E, Falconieri M, Herlin N, Loschenov V, 
Miserocchi G, Nie Y, Rivolta I, Ryabova A and Wang D 
2010 Biomedical and Sensor Applications of Silicon 
Nanoparticles, in Silicon Nanocrystals: Fundamentals, 
Synthesis and Applications ed L Pavesi and R Turan 
(Weinheim: Wiley-VCH)

	[75]	 Nishimura H et al 2013 Biocompatible fluorescent silicon 
nanocrystals for single-molecule tracking and fluorescence 
imaging J. Cell Biol. 202 967–83

	[76]	 Medintz I L, Uyeda H T, Goldman E R and Mattoussi H 2005 
Quantum dot bioconjugates for imaging, labelling and 
sensing Nat. Mater. 4 435–46

	[77]	 Cheng A, Decuzzi P, Tour J M, Robertson F and Ferrari M 
2008 Mesoporours silicon particles as a multistage delivery 
system for imaging and therapeutic applications Nat. 
Nanotechnol. 3 151–7

	[78]	 Canham L T 2007 Nanoscale semiconducting silicon as a 
nutritional food additive Nanotechnology 18 1–6

	[79]	 Durnev A D et al 2010 Evaluation of genotoxicity and 
reproductive toxicity of silicon nanocrystal Bull Exp. Biol. 
Med. 149 445–9

	[80]	 Fucikova A, Valenta J, Pelant I, Kalbacova M, Broz A, 
Rezek B, Kromka A and Bakaeva Z 2014 Silicon 
nanocrystals and nanodiamonds in live cells: 
photoluminescence characteris-tics, cytotoxicity and 
interaction with cell cytoskeleton RSC Adv. 4 10334–42

	[81]	 Jaiswal J K and Simon S M 2004 Potentials and pitfalls of 
fluorescent quantum dots for biological imaging Trends Cell 
Biol. 14 497–504

	[82]	 O’Farrell N, Houlton A and Horrocks B R 2006 Silicon 
nanoparticles: applications in cell biology and medicine Int. 
J. Nanomed. 1 451–72

	[83]	 Fucikova A, Valenta J, Pelant I and Brezina V 2009 Novel use 
of silicon nanocrystals and nanodiamonds in biology Chem. 
Papers 63 704–8

	[84]	 Park J H, Gu L, von Maltzahn G, Ruoslahti E, Bhatia S N and 
Sailor M J 2009 Biodegradable luminescent porous silicon 
nanoparticles for in vivo applications Nat. Mater. 8 331–6

	[85]	 Askari S, Levchenko I, Ostrikov K, Maguire P and Mariotti D 
2014 Crystalline Si nanoparticles below crystallization 
threshold: effects of collisional heating in non-thermal 
atmospheric-pressure microplasmas Appl. Phys. Lett. 
104 163103

	[86]	 Askari S, Macias-Montero M, Velusamy T, Maguire P, 
Svrcek V and Mariotti D 2015 Silicon-based quantum dots: 
synthesis, surface and composition tuning with atmospheric 
pressure plasmas J. Phys. D: Appl. Phys. 48 314002

J. Phys. D: Appl. Phys. 49 (2016) 273001

http://dx.doi.org/10.1088/1468-6996/16/4/044601
http://dx.doi.org/10.1088/1468-6996/16/4/044601
http://dx.doi.org/10.1021/ml400394a
http://dx.doi.org/10.1021/ml400394a
http://dx.doi.org/10.1021/ml400394a
http://dx.doi.org/10.1002/anie.200900652
http://dx.doi.org/10.1002/anie.200900652
http://dx.doi.org/10.1002/anie.200900652
http://dx.doi.org/10.1021/acs.chemrev.5b00008
http://dx.doi.org/10.1021/acs.chemrev.5b00008
http://dx.doi.org/10.1021/acs.chemrev.5b00008
http://dx.doi.org/10.1088/0022-3727/49/5/054002
http://dx.doi.org/10.1088/0022-3727/49/5/054002
http://dx.doi.org/10.1063/1.3599893
http://dx.doi.org/10.1063/1.3599893
http://dx.doi.org/10.1016/0022-2852(91)90248-9
http://dx.doi.org/10.1016/0022-2852(91)90248-9
http://dx.doi.org/10.1016/0022-2852(91)90248-9
http://www.cfa.harvard.edu/hitran
http://www.cfa.harvard.edu/hitran
http://dx.doi.org/10.1088/0022-3727/39/19/R01
http://dx.doi.org/10.1088/0022-3727/39/19/R01
http://dx.doi.org/10.1109/27.279018
http://dx.doi.org/10.1109/27.279018
http://dx.doi.org/10.1109/27.279018
http://dx.doi.org/10.1088/0963-0252/17/1/015013
http://dx.doi.org/10.1088/0963-0252/17/1/015013
http://dx.doi.org/10.1134/S1063780X09030027
http://dx.doi.org/10.1134/S1063780X09030027
http://dx.doi.org/10.1134/S1063780X09030027
http://dx.doi.org/10.1088/0741-3335/42/10/201
http://dx.doi.org/10.1088/0741-3335/42/10/201
http://dx.doi.org/10.1088/0741-3335/42/10/201
http://dx.doi.org/10.1039/c5nr06537b
http://dx.doi.org/10.1039/c5nr06537b
http://dx.doi.org/10.1039/c5nr06537b
http://dx.doi.org/10.1063/1.2919712
http://dx.doi.org/10.1063/1.2919712
http://dx.doi.org/10.1016/j.carbon.2005.10.008
http://dx.doi.org/10.1016/j.carbon.2005.10.008
http://dx.doi.org/10.1016/j.carbon.2005.10.008
http://dx.doi.org/10.1016/j.carbon.2006.11.033
http://dx.doi.org/10.1016/j.carbon.2006.11.033
http://dx.doi.org/10.1016/j.carbon.2006.11.033
http://dx.doi.org/10.1016/j.carbon.2005.05.032
http://dx.doi.org/10.1016/j.carbon.2005.05.032
http://dx.doi.org/10.1016/j.carbon.2005.05.032
http://dx.doi.org/10.1021/nl015692j
http://dx.doi.org/10.1021/nl015692j
http://dx.doi.org/10.1021/nl015692j
http://dx.doi.org/10.1155/2012/315185
http://dx.doi.org/10.1155/2012/315185
http://dx.doi.org/10.1002/adma.200801464
http://dx.doi.org/10.1002/adma.200801464
http://dx.doi.org/10.1002/adma.200801464
http://dx.doi.org/10.1039/C4RA08187K
http://dx.doi.org/10.1039/C4RA08187K
http://dx.doi.org/10.1063/1.1792795
http://dx.doi.org/10.1063/1.1792795
http://dx.doi.org/10.1063/1.1792795
http://dx.doi.org/10.1016/j.carbon.2013.08.028
http://dx.doi.org/10.1016/j.carbon.2013.08.028
http://dx.doi.org/10.1016/j.carbon.2013.08.028
http://dx.doi.org/10.1021/nn700319z
http://dx.doi.org/10.1021/nn700319z
http://dx.doi.org/10.1021/nn700319z
http://dx.doi.org/10.1134/S0021364006090128
http://dx.doi.org/10.1134/S0021364006090128
http://dx.doi.org/10.1134/S0021364006090128
http://dx.doi.org/10.1002/adma.200500328
http://dx.doi.org/10.1002/adma.200500328
http://dx.doi.org/10.1002/adma.200500328
http://dx.doi.org/10.1083/jcb.201301053
http://dx.doi.org/10.1083/jcb.201301053
http://dx.doi.org/10.1083/jcb.201301053
http://dx.doi.org/10.1038/nmat1390
http://dx.doi.org/10.1038/nmat1390
http://dx.doi.org/10.1038/nmat1390
http://dx.doi.org/10.1038/nnano.2008.34
http://dx.doi.org/10.1038/nnano.2008.34
http://dx.doi.org/10.1038/nnano.2008.34
http://dx.doi.org/10.1088/0957-4484/18/18/185704
http://dx.doi.org/10.1088/0957-4484/18/18/185704
http://dx.doi.org/10.1088/0957-4484/18/18/185704
http://dx.doi.org/10.1007/s10517-010-0967-3
http://dx.doi.org/10.1007/s10517-010-0967-3
http://dx.doi.org/10.1007/s10517-010-0967-3
http://dx.doi.org/10.1039/C3RA47574C
http://dx.doi.org/10.1039/C3RA47574C
http://dx.doi.org/10.1039/C3RA47574C
http://dx.doi.org/10.1016/j.tcb.2004.07.012
http://dx.doi.org/10.1016/j.tcb.2004.07.012
http://dx.doi.org/10.1016/j.tcb.2004.07.012
http://dx.doi.org/10.2147/nano.2006.1.4.451
http://dx.doi.org/10.2147/nano.2006.1.4.451
http://dx.doi.org/10.2147/nano.2006.1.4.451
http://dx.doi.org/10.2478/s11696-009-0075-x
http://dx.doi.org/10.2478/s11696-009-0075-x
http://dx.doi.org/10.2478/s11696-009-0075-x
http://dx.doi.org/10.1038/nmat2398
http://dx.doi.org/10.1038/nmat2398
http://dx.doi.org/10.1038/nmat2398
http://dx.doi.org/10.1063/1.4872254
http://dx.doi.org/10.1063/1.4872254
http://dx.doi.org/10.1088/0022-3727/48/31/314002
http://dx.doi.org/10.1088/0022-3727/48/31/314002


Topical Review

15

	[87]	 Mariotti D, Svrcek V, Mathur A, Dickinson C, Matsubara K 
and Kondo M 2013 Carbon nanotube growth activated by 
quantum-confined silicon nanocrystals J. Phys. D: Appl. 
Phys. 46 122001

	[88]	 Mathur A, Roy S S, Tweedie M, Maguire P D and 
McLaughlin J A 2009 Electrical and Raman spectroscopic 
studies of vertically aligned multi-walled carbon nanotubes 
J. Nanosci. Nanotechnol. 9 4392–6

	[89]	 Mariotti D, Patel J, Svrcek V and Maguire P 2012 
Plasma–liquid interactions at atmospheric pressure for 
nanomaterials synthesis and surface engineering Plasma 
Proc. Polym. 9 1074–85

	[90]	 Thanh N T K and Green L A W 2010 Functionalisation of 
nanoparticles for biomedical applications Nano Today 
5 213–30

	[91]	 Vashist S K, Schneider E M, Lam E, Hrapovic S and 
Luong J H T 2014 One-step antibody immobilization-based 
rapid and highly-sensitive sandwich ELISA procedure for 
potential in vitro diagnostics Sci. Rep. 4 4407–12

	[92]	 Ribaut C, Reybier K, Torbiero B, Launay J, Valentin A, 
Reynes O, Fabre P L and Nepveu F 2008 Strategy of red 
blood cells immobilisation onto a gold electrode: characteri-
zation by electrochemical impedance spectroscopy and 
quartz crystal microbalance IRBM 29 141–8

	[93]	 Wang M, Castro N J, Li J, Keidar M and Zhang L G 2012 
Greater osteoblast and mesenchymal stem cell adhesion 
and proliferation on titanium with hydrothermally treated 
nanocrystalline hydroxyapatite/magnetically treatedarbon 
nanotubes J. Nanosci. Nanotechnol. 12 7692–702

	[94]	 Faccio G, Kämpf M M, Piatti C, Thöny-Meyer L and 
Richter M 2014 Tyrosinase-catalyzed site-specific 
immobilization of engineered C-phycocyanin to surface Sci. 
Rep. 4 5370–5

	[95]	 Yang S H, Hong D, Lee J, Ko E H and Choi I S 2013 Artificial 
spores: cytocompatible encapsulation of individual living 
cells within thin, tough artificial shells Small 9 178–86

	[96]	 Cabral J M S, Novais J M and Kennedy J F 1986 
Immobilization studies of whole microbial cells on 
transition metal activated inorganic supports Appl. 
Microbiol. Biotechnol. 23 157–62

	[97]	 Oncescu V and Erickson D 2013 High volumetric power 
density, non-enzymatic, glucose fuel cells Sci. Rep. 
3 1226

	[98]	 Yu H, Tang H and Xu P 2014 Green strategy from waste to 
value-added-chemical production: efficient biosynthesis 
of 6-hydroxy-3-succinoyl-pyridine by an engineered 
biocatalyst Sci. Rep. 4 5397

	[99]	 Olejnik M, Twardowska M, Zaleszczyk W and 
Mackowski S 2012 Bio conjugation of silver nanowires 
with photosynthetic, light-harvesting complexes Acta 
Phys. Pol. A 122 357–60

	[100]	 Goldys E and Xie F 2008 Metallic nanomaterials for 
sensitivity enhancement of fluorescence detection Sensors 
8 886–96

	[101]	 Shanmukh S, Jones L, Driskell J, Zhao Y, Dluhy R and 
Tripp R A 2006 Rapid and sensitive detection of respiratory 
virus molecular signatures using a silver nanorod array 
SERS substrate Nano Lett. 6 2630–6

	[102]	 Dohyun K and Amy E H 2013 Protein immobilization techni-
ques for microfluidic assays Biomicrofluidics 7 041501

	[103]	 Delgado J M P 2006 A critical review of dispersion in 
packed beds Heat Mass Transfer 42 279–10

	[104]	 Quiros M, Garcia A B and Montes-Moran M A 2011 
Influence of the support surface properties on the protein 
loading and activity of lipase/mesoporous carbon 
biocatalysts Carbon 49 406–15

	[105]	 Grzelakowski M, Onaca O, Rigler P, Kumar M and 
Meier W 2009 Immobilized protein–polymer nanoreactors 
Small 5 2545–8

	[106]	 Temino D M, Hartmeier W and Ansorge-Schumacher M B 
2005 Entrapment of the alcohol dehydrogenase from 
Lactobacillus kefir in polyvinyl alcohol for the synthesis 
of chiral hydrophilic alcohols in organic solvents Enzyme 
Microb. Technol. 36 3–9

	[107]	 Qiu H, Li Y, Ji G, Zhou G, Huang X, Qu Y and Gao P 
2009 Immobilization of lignin peroxidase on nanoporous 
gold: enzymatic properties and in situ release of H2O2 
by coim-mobilized glucose oxidase Bioresour. Technol. 
100 3837–42

	[108]	 Kim J, Grate J W and Wang P 2006 Nanostructures for 
enzyme stabilization Chem. Eng. Sci. 61 1017–26

	[109]	 Li J, Cheng X, Shashurin A and Keidar M 2012 Review of 
electrochemical capacitors based on carbon nanotubes and 
graphene Graphene 1 1–12

	[110]	 Kumar S, Levchenko I, Cheng Q J, Shieh J and Ostrikov K 
2012 Plasma enables edge-to-center-oriented graphene 
nanoarrays on Si nanograss Appl. Phys. Lett. 100 053115

	[111]	 Chauhan N and Narang J 2013 Immobilization of lysine 
oxidase on a gold–platinum nanoparticles modified Au 
electrode for detection of lysine Enzyme Microb. Technol. 
52 265–71

	[112]	 Song Z, Yuan R, Chai Y, Jiang W, Su H, Che X and Ran X 
2011 Simultaneous immobilization of glucose oxidase on 
the surface and cavity of hollow gold nanospheres as labels 
for highly sensitive electrochemical immunoassay of tumor 
marker Biosens. Bioelectron. 26 2776–80

	[113]	 Petkova G A, Záruba К, Zvátora P and Král V 2012 Gold 
and silver nanoparticles for biomolecule immobilization 
and enzymatic catalysis Nanoscale Res. Lett. 7 1–10

	[114]	 Ding K, Liu L, Cao Y, Yan X, Wei H and Guo Z 2014 
Formic acid oxidation reaction on a PdxNiy bimetallic 
nanoparticle catalyst prepared by a thermal decomposition 
process using ionic liquids as the solvent Int. J. Hydrog. 
Energy 39 7326–37

	[115]	 Sun Y 2010 Silver nanowires—unique templates for 
functional nanostructures Nanoscale 2 1626–42

	[116]	 Davoudi Z M, Kandjani A E, Bhatt A I, Kyratzis I L, 
O’Mullane A P and Bansal V 2014 Hybrid antibacterial 
fabrics with extremely high aspect ratio Ag/AgTCNQ 
nanowires Adv. Funct. Mat. 24 1047–53

	[117]	 Gunawan C, Teoh W. Y, Marquis C P, Lifia J and Amal R 
2009 Reversible antimicrobial photoswitching in nanosilver 
Small 5 341–4

	[118]	 Levchenko I, Ostrikov K and Murphy A B 2008 Plasma-
deposited Ge nanoisland films on Si: is Stranski–Krastanow 
fragmentation unavoidable? J. Phys. D: Appl. Phys. 
41 092001

	[119]	 Yu L, Zhang Y, Zhang B and Liu J 2014 Enhanced 
antibacterial activity of silver nanoparticles/halloysite 
nanotubes/graphene nanocomposites with sandwich-like 
structure Sci. Rep. 4 4551

	[120]	 Baksi A, Xavier P L, Chaudhari K, Goswami N, Pal S K 
and Pradeep T 2013 Protein-encapsulated gold cluster 
aggregates: the case of lysozyme Nanoscale 5 2009–16

	[121]	 Fang J, Levchenko I and Ostrikov K 2015 Atmospheric 
plasma jet-enhanced anodization and nanoparticle synthesis 
IEEE Trans. Plasma Sci. 43 765–9

	[122]	 Xu S, Long J, Sim L, Diong C H and Ostrikov K 2005 
RF plasma sputtering deposition of hydroxyapatite 
bioceramics: synthesis, performance, and biocompatibility 
Plasma Proc. Polym. 2 373–90

	[123]	 Yan T, Zhong X, Rider A E, Lu Y, Furman S A and 
Ostrikov K 2014 Microplasma-chemical synthesis and 
tunable real-time plasmonic responses of alloyed AuxAg1−x 
nanoparticles Chem. Commun. 50 3144

	[124]	 Askari S, Svrcek V, Maguire P and Mariotti D 2015 The 
interplay of quantum confinement and hydrogenation in 
amorphous silicon quantum dots Adv. Mater. 27 8011–6

J. Phys. D: Appl. Phys. 49 (2016) 273001

http://dx.doi.org/10.1088/0022-3727/46/12/122001
http://dx.doi.org/10.1088/0022-3727/46/12/122001
http://dx.doi.org/10.1166/jnn.2009.M66
http://dx.doi.org/10.1166/jnn.2009.M66
http://dx.doi.org/10.1166/jnn.2009.M66
http://dx.doi.org/10.1002/ppap.201200007
http://dx.doi.org/10.1002/ppap.201200007
http://dx.doi.org/10.1002/ppap.201200007
http://dx.doi.org/10.1016/j.nantod.2010.05.003
http://dx.doi.org/10.1016/j.nantod.2010.05.003
http://dx.doi.org/10.1016/j.nantod.2010.05.003
http://dx.doi.org/10.1038/srep04407
http://dx.doi.org/10.1038/srep04407
http://dx.doi.org/10.1038/srep04407
http://dx.doi.org/10.1016/j.rbmret.2007.12.009
http://dx.doi.org/10.1016/j.rbmret.2007.12.009
http://dx.doi.org/10.1016/j.rbmret.2007.12.009
http://dx.doi.org/10.1166/jnn.2012.6624
http://dx.doi.org/10.1166/jnn.2012.6624
http://dx.doi.org/10.1166/jnn.2012.6624
http://dx.doi.org/10.1038/srep05370
http://dx.doi.org/10.1038/srep05370
http://dx.doi.org/10.1038/srep05370
http://dx.doi.org/10.1002/smll.201202174
http://dx.doi.org/10.1002/smll.201202174
http://dx.doi.org/10.1002/smll.201202174
http://dx.doi.org/10.1007/BF00261906
http://dx.doi.org/10.1007/BF00261906
http://dx.doi.org/10.1007/BF00261906
http://dx.doi.org/10.1038/srep01226
http://dx.doi.org/10.1038/srep01226
http://dx.doi.org/10.12693/APhysPolA.122.357
http://dx.doi.org/10.12693/APhysPolA.122.357
http://dx.doi.org/10.12693/APhysPolA.122.357
http://dx.doi.org/10.3390/s8020886
http://dx.doi.org/10.3390/s8020886
http://dx.doi.org/10.3390/s8020886
http://dx.doi.org/10.1021/nl061666f
http://dx.doi.org/10.1021/nl061666f
http://dx.doi.org/10.1021/nl061666f
http://dx.doi.org/10.1063/1.4816934
http://dx.doi.org/10.1063/1.4816934
http://dx.doi.org/10.1007/s00231-005-0019-0
http://dx.doi.org/10.1007/s00231-005-0019-0
http://dx.doi.org/10.1007/s00231-005-0019-0
http://dx.doi.org/10.1016/j.carbon.2010.09.037
http://dx.doi.org/10.1016/j.carbon.2010.09.037
http://dx.doi.org/10.1016/j.carbon.2010.09.037
http://dx.doi.org/10.1002/smll.200900603
http://dx.doi.org/10.1002/smll.200900603
http://dx.doi.org/10.1002/smll.200900603
http://dx.doi.org/10.1016/j.enzmictec.2004.01.013
http://dx.doi.org/10.1016/j.enzmictec.2004.01.013
http://dx.doi.org/10.1016/j.enzmictec.2004.01.013
http://dx.doi.org/10.1016/j.biortech.2009.03.016
http://dx.doi.org/10.1016/j.biortech.2009.03.016
http://dx.doi.org/10.1016/j.biortech.2009.03.016
http://dx.doi.org/10.1016/j.ces.2005.05.067
http://dx.doi.org/10.1016/j.ces.2005.05.067
http://dx.doi.org/10.1016/j.ces.2005.05.067
http://dx.doi.org/10.4236/graphene.2012.11001
http://dx.doi.org/10.4236/graphene.2012.11001
http://dx.doi.org/10.4236/graphene.2012.11001
http://dx.doi.org/10.1063/1.3681782
http://dx.doi.org/10.1063/1.3681782
http://dx.doi.org/10.1016/j.enzmictec.2013.01.006
http://dx.doi.org/10.1016/j.enzmictec.2013.01.006
http://dx.doi.org/10.1016/j.enzmictec.2013.01.006
http://dx.doi.org/10.1016/j.bios.2010.10.039
http://dx.doi.org/10.1016/j.bios.2010.10.039
http://dx.doi.org/10.1016/j.bios.2010.10.039
http://dx.doi.org/10.1186/1556-276X-7-1
http://dx.doi.org/10.1186/1556-276X-7-1
http://dx.doi.org/10.1186/1556-276X-7-1
http://dx.doi.org/10.1016/j.ijhydene.2014.03.026
http://dx.doi.org/10.1016/j.ijhydene.2014.03.026
http://dx.doi.org/10.1016/j.ijhydene.2014.03.026
http://dx.doi.org/10.1039/c0nr00258e
http://dx.doi.org/10.1039/c0nr00258e
http://dx.doi.org/10.1039/c0nr00258e
http://dx.doi.org/10.1002/adfm.201302368
http://dx.doi.org/10.1002/adfm.201302368
http://dx.doi.org/10.1002/adfm.201302368
http://dx.doi.org/10.1002/smll.200801202
http://dx.doi.org/10.1002/smll.200801202
http://dx.doi.org/10.1002/smll.200801202
http://dx.doi.org/10.1088/0022-3727/41/9/092001
http://dx.doi.org/10.1088/0022-3727/41/9/092001
http://dx.doi.org/10.1039/c2nr33180b
http://dx.doi.org/10.1039/c2nr33180b
http://dx.doi.org/10.1039/c2nr33180b
http://dx.doi.org/10.1109/TPS.2014.2336260
http://dx.doi.org/10.1109/TPS.2014.2336260
http://dx.doi.org/10.1109/TPS.2014.2336260
http://dx.doi.org/10.1002/ppap.200400094
http://dx.doi.org/10.1002/ppap.200400094
http://dx.doi.org/10.1002/ppap.200400094
http://dx.doi.org/10.1039/c3cc48846b
http://dx.doi.org/10.1039/c3cc48846b
http://dx.doi.org/10.1002/adma.201503013
http://dx.doi.org/10.1002/adma.201503013
http://dx.doi.org/10.1002/adma.201503013


Topical Review

16

	[125]	 Costerton J W, Lewandowski Z, Caldwell D E, Korber D R 
and Lappinscott H M 1995 Microbial biofilms Annu. Rev. 
Microbiol. 49 711–45

	[126]	 Lee K C and Rittmann B E 2002 Applying a novel 
autohydro-genotrophic hollow-fiber membrane biofilm 
reactor for denitrification of drinking water Water Res. 
36 2040–52

	[127]	 San N O, Celebioglu A, Tumtas Y, Uyar T and Tekinay T 
2014 Reusable bacteria immobilized electrospun 
nanofibrous webs for decolorization of methylene blue dye 
in wastewater treatment RSC Adv. 4 32249–55

	[128]	 Gupta R, Gigras P, Mohapatra H, Goswami V K 
and Chauhan B 2003 Microbial alpha-amylases: a 
biotechnological perspective Process Biochem. 38 1599–16

	[129]	 Logan B E 2009 Exoelectrogenic bacteria that power 
microbial fuel cells Nat. Rev. Microbiol. 7 375–81

	[130]	 Burgess J G, Boyd K G, Armstrong E, Jiang Z, Yan L M 
and Berggren M 2003 The development of a marine natural 
product-based antifouling paint Biofouling 19 197–205

	[131]	 Chambers L D, Stokes K R, Walsh F C and Wood R J K 
2006 Modern approaches to marine antifouling coatings 
Surf. Coat. Technol. 201 3642–52

	[132]	 Costerton J W, Stewart P S and Greenberg E P 1999 
Bacterial biofilms: a common cause of persistent infections 
Science 284 1318–22

	[133]	 Fang J, Levchenko I, Mai-Prochnow A, Keidar M, 
Cvelbar U, Filipic G, Han Z J and Ostrikov K 2015 Protein 
retention on plasma-treated hierarchical nanoscale gold-
silver platform Sci. Rep. 5 13379

	[134]	 Vecitis C D, Zodrow K R, Kang S and Elimelech M 2010 
Electronic-structure-dependent bacterial cytotoxicity of 
single-walled carbon nanotubes ACS Nano 4 5471–9

	[135]	 Mai-Prochnow A, Bradbury M, Ostrikov K and 
Murphy A B 2015 Pseudomonas aeruginosa biofilm 
response and resis-tance to cold atmospheric pressure 
plasma is linked to the redox-active molecule phenazine 
PLoS One 10 e0130373

	[136]	 Li Y, Zhang Y and Yan B 2014 Nanotoxicity overview: 
nano-threat to susceptible populations (Review) Int. J. Mol. 
Sci. 15 3671–97

	[137]	 Fratoddi I, Venditti I, Cametti C and Russo M V 2015 How 
toxic are gold nanoparticles? The state-of-the-art Nano Res. 
8 1771–99

	[138]	 Yah C S 2013 The toxicity of gold nanoparticles in relation 
to their physiochemical properties Biomed. Res. 24 400–13

	[139]	 Kiliç G, Costa C, Fernández-Bertólez N, Pásaro E, 
Teixeir J P, Laffon B and Valdiglesias V 2016 In vitro 
toxicity evaluation of silica-coated iron oxide nanoparticles 
in human SHSY5Y neuronal cells Toxicol. Res. 5 235–47

	[140]	 Nguyen K C, Seligy V L, Massarsky A, Moon T W, 
Rippstein P, Tan J and Tayabali A F 2013 Comparison 
of toxicity of uncoated and coated silver nanoparticles J. 
Phys.: Conf. Ser. 429 012025

	[141]	 Suresh A K, Pelletier D A, Wang W, Morrell-Falvey J L, 
Gu B and Doktycz M J 2012 Cytotoxicity induced by 

engineered silver nanocrystallites is dependent on surface 
coatings and cell types Langmuir 28 2727–35

	[142]	 Mendes R G et al 2014 Synthesis and toxicity 
characterization of carbon coated iron oxide nanoparticles 
with highly defined size distributions Biochim. Biophys. 
Acta 1840 160–9

	[143]	 Yoon O J, Kim I, Sohn I Y, Kieu T T and Lee N E 2014 
Toxicity of graphene nanoflakes evaluated by cell-based 
electrochemical impedance biosensing J. Biomed. Mater. 
Res. A 102 2288–94

	[144]	 Bradley D 2012 Is graphene safe? Mater. Today  
15 230

	[145]	 Yildirimer L, Thanh N T K, Loizidou M and Seifalian A M 
2011 Toxicology and clinical potential of nanoparticles 
Nanotoday 6 585–607

	[146]	 Nel A, Xia T, Madler L and Li N 2006 Toxic potential of 
materials at the nanolevel Science 311 622–7

	[147]	 Czajkowska B and Blazewicz M 1997 Phagocytosis 
of chemically modified carbon materials Biomaterials 
18 69–74

	[148]	 Simeonova P P 2009 Update on carbon nanotube toxicity 
Nanomedicine 4 373–5

	[149]	 Han Z J, Levchenko I, Kumar S, Yajadda M M A, Yick S, 
Seo D H, Martin P J, Peel S, Kuncic Z and Ostrikov K 2011 
Plasma nanofabrication and nanomaterials safety J. Phys. 
D: Appl. Phys. 44 174019

	[150]	 Yan D, Talbot A, Nourmohammadi N, Sherman J H, 
Cheng X and Keidar M 2015 Toward understanding the 
selective anticancer capacity of cold atmospheric plasma—a 
model based on aquaporins Biointerphases 10 040801

	[151]	 Siu A, Volotskova O, Cheng X, Khalsa S S, Bian K, 
Murad F, Keidar М and Sherman J H 2015 Differential 
effects of cold atmospheric plasma in the treatment of 
malignant glioma PLoS One 10 e0126313

	[152]	 Keidar M 2015 Plasma for cancer treatment Plasma 
Sources Sci. Technol. 24 033001

	[153]	 Cheng X, Rajjoub K, Sherman J, Canady J, Recek N, 
Yan D, Bian K, Murad F and Keidar M 2015 Cold 
plasma accelerates the uptake of gold nanoparticles into 
glioblastoma cells Plasma Process. Polym.  
12 1364–9

	[154]	 Shashurin A, Scott D, Zhuang T, Canady J, Beilis I I and 
Keidar M 2015 Electric discharge during electrosurgery Sci. 
Rep. 4 9946

	[155]	 Yan D, Talbot A, Nourmohammadi N, Cheng X, Canady J, 
Sherman J and Keidar M 2015 Principles of using cold 
atmospheric plasma stimulated media for cancer treatment 
Sci. Rep. 5 18339

	[156]	 Recek N, Cheng X, Keidar M, Cvelbar U, Vesel A, 
Mozetic M and Sherman J 2015 Effect of cold plasma on 
glial cell morphology studied by atomic force microscopy 
PLoS One 10 e0119111

	[157]	 Shashurin A, Keidar M, Bronnikov S, Jurjus R A and 
Stepp M A 2008 Living tissue under treatment of cold 
plasma atmospheric jet Appl. Phys. Lett. 93 19529842

J. Phys. D: Appl. Phys. 49 (2016) 273001

http://dx.doi.org/10.1146/annurev.mi.49.100195.003431
http://dx.doi.org/10.1146/annurev.mi.49.100195.003431
http://dx.doi.org/10.1146/annurev.mi.49.100195.003431
http://dx.doi.org/10.1016/S0043-1354(01)00425-0
http://dx.doi.org/10.1016/S0043-1354(01)00425-0
http://dx.doi.org/10.1016/S0043-1354(01)00425-0
http://dx.doi.org/10.1039/C4RA04250F
http://dx.doi.org/10.1039/C4RA04250F
http://dx.doi.org/10.1039/C4RA04250F
http://dx.doi.org/10.1016/S0032-9592(03)00053-0
http://dx.doi.org/10.1016/S0032-9592(03)00053-0
http://dx.doi.org/10.1016/S0032-9592(03)00053-0
http://dx.doi.org/10.1038/nrmicro2113
http://dx.doi.org/10.1038/nrmicro2113
http://dx.doi.org/10.1038/nrmicro2113
http://dx.doi.org/10.1080/08927010309509697
http://dx.doi.org/10.1080/08927010309509697
http://dx.doi.org/10.1080/08927010309509697
http://dx.doi.org/10.1016/j.surfcoat.2006.08.129
http://dx.doi.org/10.1016/j.surfcoat.2006.08.129
http://dx.doi.org/10.1016/j.surfcoat.2006.08.129
http://dx.doi.org/10.1126/science.284.5418.1318
http://dx.doi.org/10.1126/science.284.5418.1318
http://dx.doi.org/10.1126/science.284.5418.1318
http://dx.doi.org/10.1038/srep13379
http://dx.doi.org/10.1038/srep13379
http://dx.doi.org/10.1021/nn101558x
http://dx.doi.org/10.1021/nn101558x
http://dx.doi.org/10.1021/nn101558x
http://dx.doi.org/10.1371/journal.pone.0130373
http://dx.doi.org/10.1371/journal.pone.0130373
http://dx.doi.org/10.3390/ijms15033671
http://dx.doi.org/10.3390/ijms15033671
http://dx.doi.org/10.3390/ijms15033671
http://dx.doi.org/10.1007/s12274-014-0697-3
http://dx.doi.org/10.1007/s12274-014-0697-3
http://dx.doi.org/10.1007/s12274-014-0697-3
http://dx.doi.org/10.1039/C5TX00206K
http://dx.doi.org/10.1039/C5TX00206K
http://dx.doi.org/10.1039/C5TX00206K
http://dx.doi.org/10.1088/1742-6596/429/1/012025
http://dx.doi.org/10.1088/1742-6596/429/1/012025
http://dx.doi.org/10.1021/la2042058
http://dx.doi.org/10.1021/la2042058
http://dx.doi.org/10.1021/la2042058
http://dx.doi.org/10.1016/j.bbagen.2013.08.025
http://dx.doi.org/10.1016/j.bbagen.2013.08.025
http://dx.doi.org/10.1016/j.bbagen.2013.08.025
http://dx.doi.org/10.1002/jbm.a.34886
http://dx.doi.org/10.1002/jbm.a.34886
http://dx.doi.org/10.1002/jbm.a.34886
http://dx.doi.org/10.1016/S1369-7021(12)70101-3
http://dx.doi.org/10.1016/S1369-7021(12)70101-3
http://dx.doi.org/10.1016/S1369-7021(12)70101-3
http://dx.doi.org/10.1016/j.nantod.2011.10.001
http://dx.doi.org/10.1016/j.nantod.2011.10.001
http://dx.doi.org/10.1016/j.nantod.2011.10.001
http://dx.doi.org/10.1126/science.1114397
http://dx.doi.org/10.1126/science.1114397
http://dx.doi.org/10.1126/science.1114397
http://dx.doi.org/10.1016/S0142-9612(96)00103-2
http://dx.doi.org/10.1016/S0142-9612(96)00103-2
http://dx.doi.org/10.1016/S0142-9612(96)00103-2
http://dx.doi.org/10.2217/nnm.09.25
http://dx.doi.org/10.2217/nnm.09.25
http://dx.doi.org/10.2217/nnm.09.25
http://dx.doi.org/10.1088/0022-3727/44/17/174019
http://dx.doi.org/10.1088/0022-3727/44/17/174019
http://dx.doi.org/10.1116/1.4938020
http://dx.doi.org/10.1116/1.4938020
http://dx.doi.org/10.1371/journal.pone.0126313
http://dx.doi.org/10.1371/journal.pone.0126313
http://dx.doi.org/10.1088/0963-0252/24/3/033001
http://dx.doi.org/10.1088/0963-0252/24/3/033001
http://dx.doi.org/10.1002/ppap.201500093
http://dx.doi.org/10.1002/ppap.201500093
http://dx.doi.org/10.1002/ppap.201500093
http://dx.doi.org/10.1038/srep09946
http://dx.doi.org/10.1038/srep09946
http://dx.doi.org/10.1038/srep18339
http://dx.doi.org/10.1038/srep18339
http://dx.doi.org/10.1371/journal.pone.0119111
http://dx.doi.org/10.1371/journal.pone.0119111
http://dx.doi.org/10.1063/1.3020223
http://dx.doi.org/10.1063/1.3020223

